AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

EFFECT OF EXCITATION CONTROL ON MINIMIZING INVERTER FED INDUCTION MOTOR LOSSES

BY

SAYED ABDO HAMED

A THESIS

SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS OF THE DEGREE OF MASTER OF
SCIENCE IN ELECTRICAL ENGINEERING

621.396 S.A.

SUPERVISED BY

Prof. Dr. A. K. EL-KHARASHI

Prof. Dr. M. A. BADR

3370

Dr. A. M. A. MAHMOUD

ELECT. POWER & MACHINES DEPT.

FACULTY OF ENGINEERING

AIN SHAMS UNIVERSITY

CAIRO - 1990

EXAMINERS COMMITTEE

The undersigned certify that they have read and recommended to the faculty of Engineering, Ain Shams University for acceptance a thesis entitled "Effect of excitation control on minimizing inverter fed induction motor losses " submitted by Sayed Abdo Hamed in partial fulfilment of the requirements for the degree of master of science in Electrical Engineering.

Signature

- 1. Prof. Dr. F. A. Abd El-Zaher Faccile A.A. Zaher
 Professor, Elect. Power & Machines Dept.
 Faculty of Engineering, El-AZHAR University
- 2. Prof. Dr. A. A. El-Sattar

 Professor , Elect. Power & Machines Dept.

 Faculty of Engineering , Ain Shams University
- 3. Prof. Dr. A. K. EL-Kharashi Professor, Elect. Power & Machines Dept. Faculty of Engineering, Ain Shams University

((carash

Prof. Dr. M. A. Badr
 Professor , Elect. Power & Machines Dept.
 Faculty of Engineering , Ain Shams University

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Electrical Engineering .

The work included in this thesis was carried out by the author in the Department of Electrical Power and Machines . Ain Shams University , from October 1985 to October 1990 .

No part of this thesis has been submitted for a degree or a qualification at any other University or institution .

Date : 27-11-90

Signature : SHY-U ABOO HONE

Name : SAYED ABDO HAMED

ABSTRACT

Improving the efficiency of induction motors is a very timely subject. This type of motors represents in effect the work horse of industry and is used in most household and office appliances. Accordingly, even a marginal improvement in its efficiency can result in valuable saving in energy consumption.

This thesis presents a study of the effect of excitation control on the efficiency of inverter fed three phase induction motors under steady state operating contitions. This is achieved through time domain analysis. In this respect, it has been found that better efficiencies realized at high frequencies of operation using square wave input voltage, while improved efficiency at low frequencies calls for the use of sinusoidal pulse width modulation voltage input.

A modified algorithm based on frequency response analysis for performing the above mentioned investigation has been developed. This technique has the advantage of simplicity and computation time saving and yields results in very close agreement with time domain analysis.

The above mentioned investigations are based on nonlinear mathematical models for the induction motor and its control circuit. These take into consideration saturation, proximity and skin effects.

ACKNOWLEDGEMENT

I would like to express my gratitude to Professor Dr. A. K. EL-KHARASHI, for his support, encouragement and patience during the fruitful discussions throughout the different stages of this work.

I'm also deeply indebted to Professor Dr. M. A. BADR and Dr. A. M. A. MAHMOUD for their real contribution, guidance and the substantial amount of their time and effort in this work.

I'm particularly grateful to my parents and my wife for their unwavering support and encouragement .

TABLE OF CONTENTS

ABSTRACT	
	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	i×
LIST OF TABLES	хi
	7.2
CHAPTER 1 INTRODUCTION	
1.1. General .	1
1.2. Design consideration affecting	1
motor efficiency.	
1.3. Control considerations affecting	1
motor efficiency.	
1.4. Thesis Objective and Layout	6
and Layout	7
CHAPTER 2 MODELING OF SATURATION AND	
EDDY CURRENTS EFFECT	
2.1 Effect of saturation	9
2.1.1. General	9
2.1.2. The inductance of saturated	9
magnetic circuit	
2.1.3. Modeling concept	9
2.2. Effect of eddy currents	13
2.2.1. General	15
2.2.2. Modeling concept	15
The Modelling Concept	16
CHAPTER 3 THE TIME DOMAIN AND AND AND AND AND AND AND AND AND AN	
THE TIME DOMAIN ANALYSIS 3.1. Indroduction	18
o. 1. Indi oddcrion	18

3.2. Mathematical model	
3.2.1. Equivalent circuit	18
3.2.2. Voltage equations	18
	19
3.2.3. Transformation equations	19
3.2.4. Torque equations	20
3.3. Modeling of saturation	21
3.4. Numerical Technique	22
3.5. Simulation of the input voltage	23
3.5.1. General	23
3.5.2. The six step quasi- square	
waveform	24
3.5.3. The sinusoidal PWM	28
3.6. The steady state performance	31
3.6.1. General	31
3.6.2. The Snapshot technique	_
3.6.3. The Harmonic analysis	31
3.7. Induction motor losses	32
3.7.1. General	33
3.7.2. The stator copper loss	33
3.7.3. The rotor copper loss	34
3.7.4. The Friction and windage loss	34
3.7.5. The stator iron losses	35
3.7.6. Stray load losses	35
3.8. Time domain results	37
3.8.1. General	40
occieral	40
3.8.2. Discussions of the square	
Wav e results	40

3.8.3. Discussions of the sinusoidal	
PWM results	43
3.8.4. Effect of excitation	4.3
control	40
	48
CHAPTER 4 THE FREQUENCY DOMAIN ANALYSIS	
4.1. Indroduction	57
4.2. The applicability of superposition	57
4.3. Discussion of the equivalent	57
circuit parameters	
4.3.1. Fundamental equivalent circuit	58
4.3.2. Harmonic equivalent circuit	58
4.4. Induction motor losses	59
4.4.1. General	60
4.4.2. Stator copper loss	60
4.4.3. Rotor copper loss	61
4.4.4. Stator iron loss	61
4.4.5. Friction and windage loss	62
4.5. Comparison between the time and	63
frequency domain results 4.5.1. General	64
4.5.2. The motor slip	64
4.5.3. Output power	64
	66
4.5.4. Friction and windage loss	67
4.5.5. Harmonic loss factor	67
4.5.6. Core losses	69
4.5.7. Stray load losses	70
4.5.8. Copper losses	

71

	4.5.9. Total loss and Efficiency	73
CHAPTER 5	CONCLUSIONS AND RECOMMENDATIONS	74
5.1.	Conclusions	,
5. 2.	Recommendation for future work	74
	Tor future work	75
REFERENCES		
APPENDIX A		76
		80

LIST OF FIGURES

Figure		
1.1	Distribution of energy consumption in the	Page
	industrial sector	~
2.1	Inductance of saturation circuit	2
2.2	Equivalent circuit of an induction motor	10
2.3	Variation of the leakage saturation factor with	12
	line current	
2.4	The equivalent circuit of the double cage	14
	induction motor	17
3.1	Variation of the mutual saturation factor with	17
	magnetizing current	22.
3.2	The square wave inverter scheme	24
3. 3	The output voltage waveform at 1.0 P.U frequency	
3. 4	Derivation of the phase voltages of the square	26
	Wave	27
3, 5	The stator phase current waveform at 1.0 P.U	28
3.6	The sinusoidal PWM technique	
3.7	The output voltage waveform at 1.0 P.U frequency	29
3,8	The output voltage waveform at 0.5 P.U frequency	30
3. 9	Approximate Alger Results	30
3.10		38
	Torque / slip characteristic for a range of	
3.11	frequency	41
3.12	Variation of slip	51
	Variation of output power	51
3.13	Variation of the harmonic loss factor	52
3.1 <u>4</u>	Variation of the friction and windage losses	52

3.15	Variation as as	
3.16	Variation of the eddy current and hysteresis	55
3.17	Variation of the stray load losses	53
3.18	Variation of the stator copper loss	54
3.19	Variation of the first cage copper loss	54
3. 20	Variation of the second cage copper loss	55
	Variation of the total loss	55
3. 21	Variation of the input power	56
3. 22	Variation of the efficiency	58
4.1	Fundamental frequency equivalent circuit of an	
	induction motor	59
4.2	Harmonic equivalent circuits	59
4.3	Operating point in time domain	64
4.4	Variation of motor slip with supply frequency	
4. 5	Variation of output power with supply frequency	56
4.6	Variation of friction and windage losses with	96
	supply frequency	
4.7	Variation of the harmonic loss factor with	87
	supply frequency	
4.8	Variation of core losses with supply frequency	69
4. 9	Variation of stray load losses with supply	70
	frequency	
4.10	-	70
4. 11	Variation of stator copper loss with frequency	71
	Variation of first cage copper loss with	
4.45	frequency	72
4.12	Variation of second cage copper loss with	
	frequency	72
4.13	Variation of the total losses with supply	·
	frequency	70
4.14	Variation of the efficiency	. 73
	·	73

LIST OF TABLES

Table		
1 -1	Typical design changes to	Page
3-1	Typical design changes to improve motor efficiency Square wave results	
3-2	Operation with constant modulation ratio	42
3-3	Operation with variable modulation ratio	45
4-1	Difference in slip calculation when using Time (T)	47
	Domain and Frequency Domain (F) Analysis	65
4-1	Difference in Harmonic factor calculation when	-
	using Time (T) Domain and Frequency Domain (F)	
	Analysis	68

CHAPTER 1

INTRODUCTION

1.1. GENERAL

Statistical studies in the United States of America revealed the fact that, 64 % of the total consumed energy goes to the industrial sector. In addition, 65 % out of such consumed energy is consumed by induction motors in form of pumps, fans and compressors. Therefore; about 42 percent of the total energy produced goes to induction motors (Fig. 1.1). Consequently; minimizing induction motor losses over the whole range of operation should help in saving the total energy produced and make the operating costs as economical as possible.

There are many factors influencing the induction motor efficiency such as design considerations and control applications. These will be discussed in the following section:

1.2. Design considerations affecting motor efficiency

The overall performance of an induction motor includes normally the following parameters:

- a) Heating .
- b) Efficiency .
- c) Power factor .

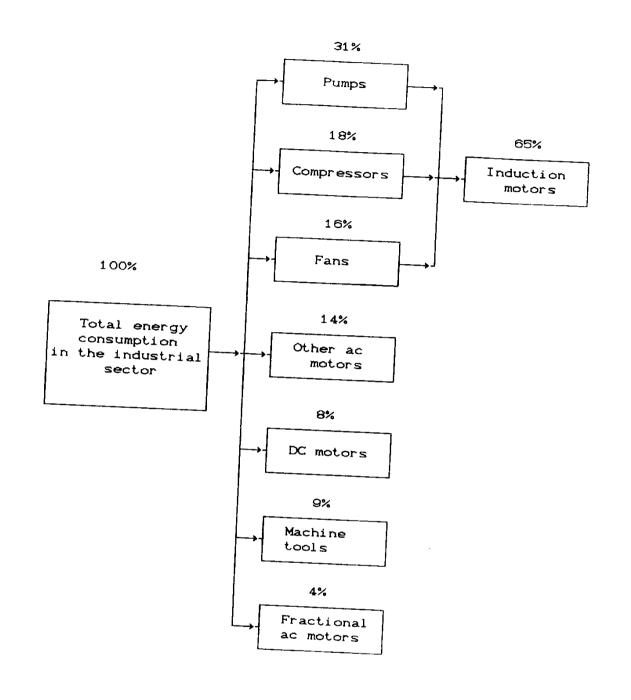


Fig. 1.1 Distribution of energy consumption in the industrial sector