BIOLOGICAL ACTIVITY OF SOME COMPONENTS EXTRACTED FROM RED ALGAE

By

WALAA ABD EL-NASSER ABD EL-KADER EL-SHALAKANY

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2004 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2009

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Ain Shams University

Approval Sheet

BIOLOGICAL ACTIVITY OF SOME COMPONENTS EXTRACTED FROM RED ALGAE

By

WALAA ABD EL-NASSER ABD EL-KADER EL-SHALAKANY

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2004 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2009

This thesis for Ph.D. degree has been approved by:

Date of Examination: 15/12/2015

		O		•	•	
Dr. Mohamed Gabber Abd El-Fadil				•••••		
	Prof. of	Biochemistry,	Faculty	of	Agriculture,	Al-Azhar
	University					
Dr	. Badr Moha	med Abd El-W	ahab			•••••
	Prof. Emer	itus of Biochem	istry, Facu	lty of	f Agriculture,	Ain Shams
	University					
Dr	. Mohamed	Fathy Abd El-H	amid		•••••	•••••
	Prof. Emer	itus of Biochem	istry, Facu	lty of	f Agriculture,	Ain Shams
	University					
Dr	. Mohamed	Abd El-Rahman	Shatla		•••••	
	Prof. Emeri	itus of Biochemis	stry, Facul	ty of A	Agriculture, Ai	in Shams
	University					

BIOLOGICAL ACTIVITY OF SOME COMPONENTS EXTRACTED FROM RED ALGAE

By

WALAA ABD EL-NASSER ABD EL-KADER EL-SHALAKANY

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2004 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2009

Under the supervision of:

Dr. Mohamed Abd El-Rahman Shatla

Prof. Emeritus of Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Fathy Abd El-Hamid

Prof. Emeritus of Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Mohamed Shams El-Din

Prof. Emeritus of Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University

ACKNOWLEDGMENT

First of all, great thanks and praises to **ALLAH** who gave me strength and patience to accomplish this work. Really, no word can express how grateful I am to **ALLAH**.

Foremost, I would like to express my deepest and sincere gratitude to **Prof. Dr. Mohamed Abd El-Rahman Shatla** Prof. of biochemistry, Faculty of Agriculture, Ain Shams University for his guidance, patience, motivation, assistance in preparing the manuscript and for allowing me to grow as a scientist. Also, I would like to thank **Prof. Dr. Mohamed Fathy Abd El-Hamid** Prof. of biochemistry, Faculty of Agriculture, Ain Shams University for his supervision, encouragement, valuable help and priceless advices in preparing the manuscript. Moreover, I would like to express my appreciation to **Prof. Dr. Mohamed Mohamed Shams El-Din** Prof. of biochemistry, Faculty of Agriculture, Ain Shams University for his efforts in providing all facilities required to successfully finish this work.

Thanks are also extended to all biochemistry department staff.

Moreover, I would like to offer my sincere gratitude to the staff members of microbiology department specially **Prof. Dr. Khaled Abd El-Fattah El-Dougdoug** Prof. of microbiology, Faculty of Agriculture, Ain Shams University for his efforts in providing all facilities required to conduct the virology experiment.

Finally, words are not enough to express how I am grateful to my parents who pushed me to accomplish success in my life. Heartfelt thanks to my brother and my uncle for sacrificing their time to assist me throughout this work.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1 History of Seaweed Utilization.	4
2.2 Seaweeds classification.	5
2.2.1 Red Algae.	5
2.2.2 Brown Algae.	5
2.2.3 Green Algae.	6
2.3 Biologically active compounds of algal extract.	6
2.4 Using seaweed extracts as components of pharmaceuticals,	14
feeds and fertilizers.	
2.5 Carrageenan.	18
2.5.1 Chemical structure of carrageenanes.	18
2.5.2 Biological activity of carrageenan.	18
2.6 Seaweeds in plant agriculture.	21
2.6.1 Seaweeds promote plant growth.	22
2.6.2 Seaweeds stimulate plant resistance to biotic stress.	28
3. MATERIALS AND METHODS	32
3.1 Collection of Seaweeds.	32
3.2 Physical and chemical analysis of <i>Chondrus crispus</i> .	32
3.3 Preparation of water extracts.	32
3.4 Extraction of Carrageenanes.	33
3.5 Plant materials and cultivation.	33
3.6 Physical and biochemical analysis of plants.	37
3.6.1 Moisture content.	37
3.6.2 Ash.	37

3.6.3 Crude fiber.	37
3.6.4 Plant pigments.	37
3.6.5 Proline content.	38
3.6.6 Total phenols content.	39
3.6.7 Reducing Sugars content.	40
3.6.8 Total Soluble Sugars content.	40
3.6.9 Total carbohydrate content.	41
3.6.10 Starch content.	41
3.6.11 Free Amino Acids content.	42
3.6.12 Osborne Fractionation Method.	42
3.6.13 Protein Molecular Weight by SDS-PAGE.	43
3.6.14 N, P and K content.	44
3.6.15 Total (Mg, Mn, Fe, Zn, Cu and Se) content.	44
3.6.16 Enzymes assays.	44
3.6.16.1 Soluble Protein content.	45
3.6.16.2 Guaiacol peroxidase (G-POD) assay.	46
3.6.16.3 Polyphenol oxidase (PPO) assay.	46
3.6.16.4 Phenylalanine ammonia lyase (PAL) assay.	46
3.6.17 Total amylase activity assay.	47
3.6.18 Cellulose, Alpha and Beta-Cellulose content.	48
3.6.19 Wheat Grade Characteristics.	49
3.6.20 Milling Quality Characteristics.	49
3.6.21 Physical Dough Properties.	49
3.6.22 Amino acids Analyzer.	49
3.6.23 Tryptophan Content.	50
3.6.24 Tyrosine Content	50
3.6.25 Visual symptoms assessment	50
3.6.26 Virus concentration by DAS-ELISA	50
3.6.27 Statistical analysis.	51
4. RESULTS AND DISCUSSION	52
Chemical Constituents of Chondrus crispus	52
4.1 Part I	54

4.1.1 Effect of red algal extract or carrageenan on photosynthetic	54
pigments of potato leaves inoculated with PVY.	
4.1.2 Effect of red algal extract or carrageenan on proline	57
concentration of potato leaves inoculated with PVY.	
4.1.3 Effect of red algal extract or carrageenan on phenolic	60
compounds concentration of potato leaves subjected to PVY	
stress.	
4.1.4 Effect of algal extract or carrageenan on phenylalanine	60
ammonia lyase activity (PAL) in the resultant tuber from infected	
potato plants.	
4.1.5 Effect of algal extract or carrageenan on peroxidase activity	65
(POD) in resultant tuber from potato plants grown under PVY	
injury.	
4.1.6 Effect of algal extract or carrageenan on polyphenol oxidase	68
activity (PPO) in resultant tuber from potato plants grown under	
PVY injury.	
4.1.7 Effect of algal extract or carrageenan on starch and moisture	70
contents of the resultant tuber under biotic stress by PVY	
infection.	
4.1.8 Effect of algal extract or carrageenan on amylase activity of	73
the resultant tuber under PVY injury.	
4.1.9 Effect of algal extract or carrageenan on carbohydrate	76
fractions of the resultant tuber under biotic stress by PVY	
infection.	
4.1.10 Effect of algal extract or carrageenan on free amino acids	82
concentration of the resultant tuber under virus infection.	
4.1.11 Effect of algal extract or carrageenan on phenolic	86
compounds concentration of the resultant tuber from infected	
potato plants.	
4.1.12 Effect of algal extract or carrageenan on disease severity	88
and virus (PVY) concentration of potato grown under injury	
conditions.	

4.2 Part II	91
4.2.1 Photosynthetic parameters.	91
4.2.2 Yield and yield attributing characters	93
4.2.3 Physo-characteristics of grains.	96
4.2.4 Nutritive quality of grains.	96
4.2.5 Electrophoresis Identification.	102
4.2.6 Amino acids composition of wheat flour protein	107
4.2.7 Analytical characteristics of whole wheat flour.	110
4.2.8 Alveograph rheological characteristics.	112
4.2.9 Effect of algal extract on the main constituents of wheat	113
straw.	
4.2.10 Effect of algal extract on nutrient elements of wheat straw.	114
5. SUMMARY AND CONCLUSION	116
6. REFERENCES	124
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Chemical analysis of <i>Chondrus crispus</i> .	53
2	Physical and Chemical Soil analysis of the experimental site.	34
3	Layout of potato experimental design.	36
4	Effect of red algal extract or carrageenan (1mg/ml) on	56
	photosynthetic pigments of potato leaves subjected to PVY infection.	
5	Effect of red algal extract or carrageenan (1mg/ml) on	58
	Proline concentration of potato leaves infected by PVY infection.	
6	Effect of red algal extract or carrageenan (1mg/ml) on	62
	Phenolic compounds concentration of potato plants infected	
	by PVY.	
7	Effect of red algal extract or carrageenan (1mg/ml) on	64
	Phenylalanine ammonia lyase (PAL) activity of infected	
8	potato plants. Effect of red algal extract or carrageenan (1mg/ml) on Peroxidase (POD) activity of potato plants subjected to PVY stress.	66
9	Effect of red algal extract or carrageenan (1mg/ml) on Polyphenol oxidase (PPO) activity of potato plants subjected to PVY stress.	69
10	Effect of red algal extract or carrageenanes on starch and	71
	moisture contents of the resultant tuber under PVY infection.	
11	Effect of red algal extract or carrageenan (1mg/ml) on Amylase activity of the resultant tuber under biotic stress by PVY infection.	74
12	Effect of red algal extract or carrageenan (1mg/ml) on carbohydrate fractions of the resultant tuber under biotic stress by PVY infection	77
13	Effect of red algal extract or carrageenan (1mg/ml) on Free	84

	Amino acids concentration (FAA) of the resultant tuber	
	under biotic stress by PVY infection.	
14	Effect of algal extract or carrageenan (1mg/ml) on phenolic	86
	compounds concentration of the resultant tuber.	
15	Effect of algal extract or carrageenan on detection of	90
	mosaic virus (PVY) by ELISA-test in the resultant potato	
	tuber under infection conditions.	
16	Effect of algal extract on some photosynthetic parameters	92
	of the main flag leaves in wheat plants.	
17	(a) Effect of algal extract on yield and yield attributing	94
	characters of Triticum aestivum, var. Sakha 93.	
17	(b) Effect of algal extract on yield and yield attributing	95
	characters of Triticum aestivum, var. Sakha 93.	
18	Physo-Chemical characteristics of whole wheat grains	97
	sprayed with red algal extract.	
19	Effect of foliar red algal extract spraying on carbohydrate	98
	fractions of whole wheat grains.	
20	Some macro and micro nutrient elements of whole grains,	99
	as affected by foliar spraying with red algal extract.	
21	The different protein fractions contents of resultant grains	101
	from wheat plants sprayed with algal extract.	
22	(a) Molecular masses of different band spectra of wheat	104
	grain proteins.	
22	(b) Effect of algal extract on band intensity of wheat grain	105
	protein fractions.	
23	Amino acids composition of wheat flour affected by 20% & 30% of algal extract.	109
24	The essential amino acid contents (mg/g protein) in wheat	110
	flour affected by algal extract, and their chemical score	
	compared with the required pattern content.	
25	The Analytical characteristics of wheat grains flour from	111
	plants sprayed with algal extract.	

- 26 The distinctive Alveographic properties of the dough of 113 whole flour from wheat plants affected by algal extract.
- 27 The main constituents of wheat straw affected by foliar 114 spraying of red algal extract.
- 28 Some macro and micro nutrient elements of wheat straw, 115 as affected by foliar spraying of red algal extract.

LIST OF FIGURES

No.]	Page
1	Effect of algal extract or carrageenan on total chlorophylls	55
	and carotenoids concentration of potato leaves.	
2	Effect of algal extract or carrageenan on Proline	59
	concentration of potato leaves.	
3	Effect of algal extract or carrageenan on Phenolic	63
	compounds concentration of potato plants.	
4	Effect of algal extract or carrageenan on Phenylalanine	65
	Ammonia Lyase (PAL) activity of potato plants.	
5	Effect of algal extract or carrageenan on Peroxidase (POD)	67
	activity of potato plants.	
6	Effect of algal extract or carrageenan on Polyphenol Oxidase	70
	(PPO) activity of potato plants.	
7	Effect of algal extract or carrageenan on starch concentration	72
	of potato tuber.	
8	Effect of algal extract or carrageenan on amylase activity of	75
	potato tuber.	
9	Effect of algal extract or carrageenan on Reducing Sugars	78
	content of potato tuber.	
10	Effect of algal extract or carrageenan on Non-Reducing	79
	Sugars content of potato tuber.	
11	Effect of algal extract or carrageenan on Total Soluble	80
	Sugars content of potato tuber.	
12	Effect of algal extract or carrageenan on Total Carbohydrates	81
	content of potato tuber.	
13	Effect of algal extract or carrageenan on Free Amino Acids	85
	(FAA) content of potato tuber.	
14	Effect of algal extract or carrageenan on Phenolic	88
	compounds content of potato tuber.	
15	The protein banding patterns of protein fractions extracted	104-
(a,b)	from wheat grains.	105

LIST OF ABREVIATIONS

ABA : Abscisic acid

DAS : Days after sowingDNSA : Dinitrosalycylic acidDSI : Disease severity index

DW : Dry weight

ELISA : Enzyme-Linked Immune Sorbent Assay

FAA : Free amino acid FW : Fresh weight

G-POD : Guaiacol peroxidase HMW : High molecular weight

IAA : Indol acetic acid

ISR : Induced systemic acquired resistant

LMW : Low molecular weight

PAL : Phenylalanine ammonia lyase

POD : Peroxidase

PPO : Polyphenol oxidase

PR-proteins : Pathogeneses-related proteins

PVP : Polyvinylpyrrolidone

PVY : Potato virus Y

RE : Red algae Extract

ROS : Reactive oxygen species

SDS-PAGE : Discontinuous polyacrylamide gel electrophoresis

SLE : Seaweed Liquid Extract

ABSTRACT

Walaa Abd El-Nasser Abd El-Kader El-Shalakany: Biological Activity of some Components Extracted from Red Algae. Unpublished Ph.D. Thesis, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, 2015.

The present study was conducted in the Faculty of agriculture green house or farm; Ain shams University at Shoubra El-Kheima, Kalubia Governorate during the two successive seasons of 2012 and 2013. Potato tubers (*Solanum tuberosum*, Diamond) were grown in dark plastic bags. The potato seedlings inoculated with PVY, and treated with red algal aqueous extract (10, 20, 30%) and carrageenanes (1mg/ml), which were applied at three times. Wheat grains (*Triticum aestivum* L.) var., Sakha 93, was germinated in the field experience. The growing wheat plants were foliar sprayed twice (at flowering and grain development stages) by each of three concentrations of (10, 20 and 30 %) of *Chondrus crispus* extract under recommended fertilization by ministry of agriculture.

Results obtained from potato experiment showed that the disease severity and PVY concentration were reduced in the treated plant. Potato virus Y caused a significant increase in the levels of proline, total phenolic compounds, phenylalanine ammonia lyase (PAL) activity, antioxidant defense enzymes (peroxidase and polyphenol oxidase) of potato leaves and amylase activity of resultant tubers, while, it led to a significant decrease in starch concentration by about 35% than control plants. On the other hand, the foliar spraying both algal extract and carrageenan were improved of infected plant growth related to significantly increased in proline, total phenols, PAL, peroxidase, polyphenol oxidase, amylase activity and starch concentration either in pre or post PVY inoculation. The enhancement of plant growth was found

associated with restriction of virus concentration as proved by ELISA. The results indicated that the use of carrageenanes (1mg/ml) and highest concentrations of red algal extract (20 % and 30 %) induce systemic resistance provide an efficient tool, as antiviral agent to manage potato virus Y in potato plants.

Results obtained from wheat experiment showed that foliar spraying with 20% algal extract reached the productivity of wheat by 62% than control; increased the yield attributing characters (flag leaf area, height and weight plant, length and weight spike, grain number/spike, weight and size of 1000 grain and specific test weigh), the nutritive quality of grains (starch, total carbohydrates, macro and micro nutrient elements, protein content of grains which is reflected on improving the rheological properties of dough. In contrast, the highest concentration of algal extract (30%) reduced the productivity by 38%, the nutritive quality of grains and wheat straw. Also, foliar spraying with algal extract (at 20%) to wheat plants showed positive effects on protein fractions, hence consumption of these whole grains may render beneficial health effects. It is worthy to mention that, the new band no. 1 with high molecular weight (HMW= 135 KDa) subunit protein was induced in grains of plants in response to algal application. Finally, the nutritive quality of wheat straw such as ash, total carbohydrates and crude protein percentages were increased as a result of foliar spraying with 20% of algal extract.

Keywords: Red algae, Carrageenanes, PVY, Potato, Wheat and Yield.