
Y Missey

EFFECT OF TRANSITIONS ON FLOW CHARACTERISTICS IN OPEN CHANNELS

BY

KHALED SHAFIK EL-KHOLY

(B. Sc. Civil Eng. - Ain Shams University)

A Thesis submitted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

IN CIVIL ENGINEERING

16006

Supervised By

Prof. Dr. MOHAMED WAFAIE ABDELSALAM

Professor of Irrigation Design and Hydraulics,

Faculty of Engineering - Ain Shams University

Dr. ALI MOHAMED TALAAT

Asst. Professor of Irrigation Design and Hydraulics,

Faculty of Engineering - Ain Shams University

Dr. MAHMOUD ABDELLATEEF MOHAMED

Asst. Professor of Irrigation design and Hydraulics,
Faculty of Engineering - Ain Shams University

AIN SHAMS UNIVERSITY

CAIRO, EGYPT

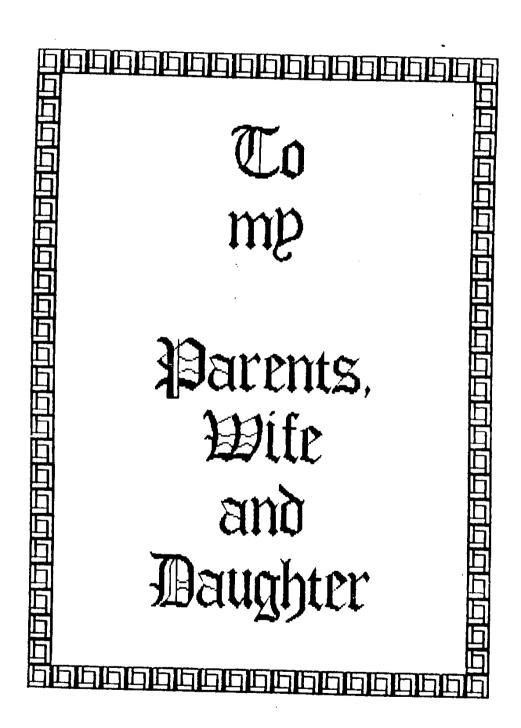
1988

المرقي الرحوي الرجيي

APPROVED BY

BOARD OF EXAMINERS

Prof. Dr. MDHAMED HAMMDI EL-KATIB
Cairo University


M.H.Sl. Lites

Prof. Dr. MOHAMED EL-NIAZI HAMMAD
Ain Shams University

Haynmand

Prof. Dr. MOHAMED WAFAIE ABDELSALAM
Ain Shams University

maxel dalam

ACKNOWLEDGMENT

I would like to take this opportunity to thank all those to whom I owe gratitude for their patience and help.

I am greatly indebted to Professor Dr. Mohamed Wafaie Abdelsalam, Professor of Irrigation Design, Faculty of Engineering, Ain Shams University, who supervised this study and guided its progress. I wish to thank him for his guidance and useful suggestions.

Special acknowledgment is due to Dr. Ali Talaat, Asst. Prof. of Irrigation Design, Faculty of Engineering, Ain Shams University, for his kind supervision and stimulating discussions.

Many Thanks are also due to Dr. Mahmoud Abdellateef, Asst. Prof. of Irrigation Design, Faculty of Engineering, Ain Shams University, who has generously devoted his time and effort throughout this work.

Thanks are also due to my wife Amani Badawi the demonstrator at the Faculty of Arts, English Department for her thorough revision of this Thesis. I would like also to thank her for her patience and encouragement throughout the course of the study.

Finally, I wish to extend gratefulness to all members of the technical staff of the Hydraulic Laboratory, Ain Shams University, for having contributed in one way or another to the successful achievement of this work.

Central Library - Ain Shams University

ABSTRACT

This study aims at investigating the effect of the expanded transitions on flow characteristics.

In the theoretical study, dimensional analysis was employed to relate the different factors affecting the phenomena. Moreover, the momentum principle as well as the continuity equation were used to get an expression for the recovery in water surface elevation in the expanding transition.

Experiments were conducted in a smooth rectangular channel. Models with different diversion angles and expansion ratios were tested using variables flow parameters, i.e. discharge, and tailwater depth.

Using the experimental data, relations were plotted describing the main characteristics of flow. For analysing the experimental data statistical methods were used to deduce empirical formulae for the main characteristics of flow.

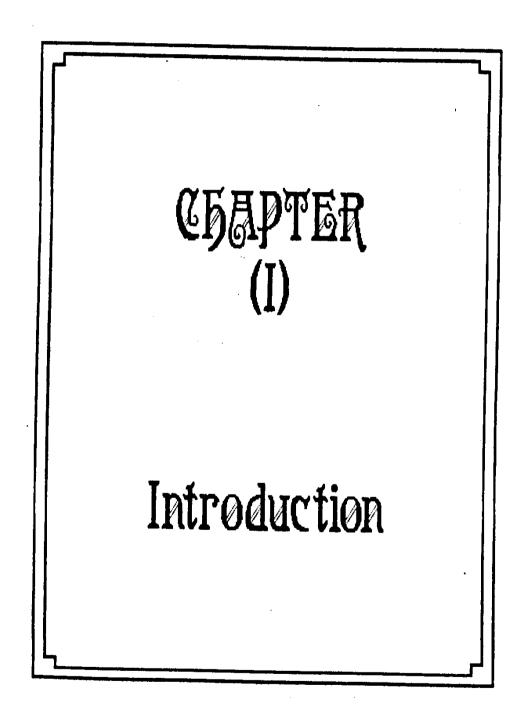
-1

LIST OF SYMBOLS

A = Cross	-sectional area of channel	L²
$A_1 = Cross$	-sectional area of channel before	Lz
trans	ition	
$A_2 = Cross$	-sectional area of channel after	L²
trans	ition	
b = Bed w	idth before transition	L
B = Bed wi	idth after transition	L
B _{mem} =Actual	l bed width at transition zone fo	r
any se	ection	I.
b/B= Expans	sion ratio	
C1,D1,E1 =	coefficients depending on b/B	
, ε	and F ₂	-
E ₁ '= Specif	ic energy at section 0.2B cm	
upstre	am the transition	L
E2'= Specif	ic energy at section 0.2B cm	
downst	ream the transition	L
∆ E = Energy	loss through the transition	L
= E ₁ '-	E ₂ '	
F = Froude	number	-
F₂ = Froude	number at the tailwater section	-
Fp = Hydros	tatic pressure force	MLT-2
$Fp_{wx} = The$	componant of the Hydrostatic	
pres	sure force on the side wall in	
the d	direction of flow	MLT-2

f1,g1,h1 = Coefficients depending on θ	-
g = Acceleration due to gravity	LT-2
Δh = Head recovery = difference in water	
surface elevation between the	
minimum depth at the transition zone	
and the tailwater depth	L
il,jl,kl = Coefficients depending on θ	
K = Coefficient defined elsewhere	~
L = Model length	L
L' = Length of the transition measured in	
the direction of flow	L
11,m1,n1 = Coefficients depending on 0	-
n = Coefficient defined elsewhere	_
O1,P1,W1,U1 = Coefficients depending on	
b/B , 0	-
Q = Total discharge	L 3 T - 1
Rn = Reynolds' number	-
R = Correlation coefficient	-
t = Thickness of model	L
v = Point velocity in the x-direction	L
V = Mean velocity	LT-1
$ m V_1$ = Mean velocity at the upstream section	LT-1
$ m V_{2}$ = Mean velocity at the downstream section	LT-1
V_3 = Mean velocity at the beginning of the	
transition	LT-1
V_4 = Mean velocity at the end of the	
transition	r m 1

Х	=	E Linear horizontal distance, distance	
		from the beginning of transition measur	ed
		in the direction of flow	L
Y	=	= Depth of water referred to average	
		bottom elevation	L
Υı	. ==	Upstream water depth	L
Y,	. + ==	Water depth at section 0.2B cm upstream	ı
		the transition	Ĺ
Υz	=	Tailwater depth	L
Yэ	=	Water depth at the beginning of the	
		transition	L
Υ 4	=	Water depth at the end of the transitio	n L
Υm	=	Minimum water depth at the transition	
		zone	L
Z	=	Linear horizontal distance, measured	
		normal to the direction of flow from the	9
		centre line of the channel.	L
œ	=	Energy coefficient	-
ß	=	Momentum coefficient	-
8	=	Specific weight of water	MI - = I - =
بح	=	Coefficient defined elsewhere	-
θ	=	Angle of diversion of expansion wall	
		with the centre line of the channel	
μ	=	Dynamic viscosity	WL-11-1
و	=	Mass density	ML - 3


TABLE OF CONTENTS Page CHAPTER (1) INTRODUCTION CHAPTER (2) REVIEW OF LITERATURE CHAPTER (3) THEORETICAL APPROACH 31 3.1. Dimensional Analysis 31 3.2. The Momentum Equation 34 CHAPTER (4) EXPERIMENTAL WORK 37 4.1. General Layout of Testing Units 37 4.2. Experimental Equipments 37 4.2.1. The Feeding Pump 37 4.2.2. The Overhead Tank 40 4.2.3. The Constant Head Tank 40 4.2.4. The Flume 42 4.2.5. The Stilling Chamber 42 4.2.6. The Test Models 42 4.2.7. The Instrument Carriage 46 4.3. Methods of Measurements 49 -4.3.1. Discharge Measurements 49 4.3.2. Water Depth Measurements 51 4.3.3. Velocity Measurements

51

	Page
4.4. The Flow Circuit	53
4.5. Procedure of Work	54
CHAPTER (5)	
EXPERIMENTAL DATA	56
5.1. Water Surface Profiles	56
5.2. The Relative Rise In	
Water Surface	62
5.3. The Relative Energy Loss	62
5.4. Velocity Distribution In	
Expanded Transition	62
CHAPTER (6)	
ANALYSIS AND DISCUSSION	82
6.1. Water Surface Profiles	82
6.1.1. Effect of The Diversion	
Angle 0	82
6.1.2. Effect of The Expansion	
Ratio b/B	82
6.2. The Relative Rise In	
Water Surface	82
6.3. The Relative Energy Loss	106
6.4. Separation of Flow	109
6.4.1. Integration of Velocity V	109
6.4.2. Determination of The Width	
of Moving Strang	

(x,y) = (x,y) + (x,y) + (y,y)

	Page
6.4.3. Determination of The Wake	
Width	113
6.5. Non-uniformity of	
Velocity Distribution	119
6.6. Combined Effect of The	
Expansion Ratio and The	
Diversion Angle	119
6.6.1. Effect on The Relative	
Rise In Water Surface	119
6.6.2 Effect on The Wake Width	123
CHAPTER (7)	
CONCLUSIONS	126
REFERENCES	129
APPENDICES	123

CHAPTER (I)

INTRODUCTION

At changes in cross sectional area of a channel, the structure that conducts the liquid from the upstream section to the new section is called a transition. Its purpose is to change the shape of flow and surface profile in such a manner that minimum losses result.

Transitions with the shape of cross-sectional dimensions occurring in a relatively short distance will induce rapid change in the characteristics of flow. Such transitions include sudden contractions and expansions vertically, horizontally, or both.

In the previous studies on transitions with divergent walls, an expansion in bed width, most researchers studied the effect of the diversion angle or the expansion ratio on the flow characteristics.

The aim of this study is to find the effect of the diversion angle with the expansion ratio on the flow characteristics and to find the best design of the expanded transition problems.

The dimensional analysis is used to find an expression for the relative head recovery in terms of the other variables.

In this study the theoretical analysis is based on applying continuity and momentum principles between the section just. before and after the transition. The energy equation is used to obtain the energy degradation at the centre line through the transition. Moreover, the continuity equation and the velocity distribution are used to obtain the wake width through and at