1 5747/4

THERMAL GENERATING UNIT COMMITMENT BY DYNAMIC PROGRAMMING

YV

Ву

Eng. FOUAD MOHAMMED MANSOUR MOHAMMED

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in Mechanical Engineering

at the
Faculty of Engineering
Ain-Shams University

26003

621 F. M

Supervised by

Prof.Dr.Samir M. Abdel Ghany

Dept. of Energy & Automotive Eng.,

Vice Dean for Post Graduate

Studies & Research Affairs,

Ain-Shams University.

Dr.Mohamed A. El Gazzar

Director General for

Information & Documents,

Ministry of Electricity

& Energy.

CAIRO - 1987

EXAMINERS

Name and Title

Signature

Prof.Dr. : Mahmoud Sobhi Abdel Salam

Chairman of the Dept. of Mechanical Power Eng., Cairo University.

Prof.Dr. : Ahmed Risk Abu El Wafa

Dept. of Electrical Power & Machines Eng.,

Ain-Shams University.

Prof.Dr. : Samir M. Abdel Ghany

Depr. of Energy & Automotive Eng., & Vice Dean 17/1/88

for Post Graduate Studies & Research Affairs,

Ain-Shams University.

Dr. Eng. : Mohamed A. El Gazzar

Director General for Information & Documents,

Ministry of Electricity & Energy.

M. Elgy

THERMAL GENERATING UNIT COMMITMENT BY DYNAMIC PROGRAMMING

ΒY

Eng. FOUAD MOHAMMED MANSOUR MOHAMMED

Submitted to

The Department of Mechanical Engineering in the partial fulfillment for the requirements of the M. Sc. Degree

in Mechanical Engineering

SUMMARY

Saving foreign currency spent on fuel oil is one of the targets of the utmost importance in Egypt, due to the great amounts of fuel consumed in the large number of thermal generating units connected to the national grid.

This thesis is concerned with the short term thermal generation scheduling in which the thermal units are scheduled on an hourly basis to minimize the total fuel cost in a day-to-day system operation while satisfying some of the important operational constraints.

The purpose was to provide a flexible operational method, that is, an analytical model which, given the continuous changes in the system and its demands, could be applied by the Egyptian Electricity Authority (EEA) to schedule the thermal units in a flexible manner while maintaining a maximum saving in the foreign currency spent on the consumed fuel oil.

ACKNOWLEDGEMENTS

0

The author wishes to express his gratitude to his supervisors, Prof. Dr. Samir M. Abdel Ghany, and Dr. Mohamed A. El Gazzar, for their supervision, fruitful discussions, and constant guidance and encouragement during the course of the research work presented in this thesis.

The author is grateful to Dr. Emad El Sharkawi, Chairman of Egyptian Electricity Authority for his interest & advice.

The author thanks Eng. K.Y. Moustafa, from the National Energy Control Center (NECC), for his interest, valuable help and encouragement.

The author wishes to express his sincere and deep appreciation to his parents whose patience & constant encouragement constituted a major source of inspiration for him during the whole period of study.

TABLE OF CONTENTS

			PAG
TITLE PA	GE		i
EXAMINER	RS		ii
SUMMARY		•	iii
ACKNOWLE	DGEMENTS		v
TABLE OF	CONTENTS	3	٧i
LIST OF	FIGURES		x
GLOSSARY	OF TERMS	3	хi
CHAPTER	ONE	INTRODUCTION	1
	1.1	Scope of the Thesis.	1
	1.2	Outline of the Thesis.	2
CHAPTER	TWO	LITERATURE SURVEY	4
	2.1	Common Techniques of Priority Listing.	4
	2.2	Improved Techniques of Priority Listing.	11
	2.3	Integer Programming Approach.	14
	2.4	Dynamic Programming Approach.	16
CHAPTER	THREE	FACTORS, FEATURES AND CONSTRAINTS	
		AFFECTING THE COMMITMENT PROBLEM	31
	3.1	Horizon Time.	32
	3.2	Time Increments.	32
	3.3	Number of Units.	33
	3.4	Types of Units.	34
	3 5	Cinco of Naite	2 /

	Α.
-	_ `
	_

3.6	Ages of Units.	34
3.7	Maintenance Schedules.	35
3 - 8	Crew Constraints.	35
3 - 9	Unit Loading Curves.	35
3.10	Minimum and Maximum Output Limits of Units.	36
3.11	Extensions of Normal Operation.	36
3.12	Shut Down and Load Change Costs.	36
3.13	Start Up Costs.	37
3.14	Minimum Up and Minimum Down Times.	37
3.15	Start Up and Shut Down Rate Limits.	38
3.16	Number of Stops-Starts of the Unit.	38
3.17	Number of Unit Start Ups Per Day.	39
3.18	Unit's Efficiency, Heat Rate and Incremental Heat Rate.	39
3.19	Load Modeling.	40
3.20	Forced Outage and Unserved Energy Cost.	40
3.21	The Reserve.	42
3.22	External Power Support.	43
3.23	Inerruptable Loads.	43
3.24	Transmission Effects.	44
3.25	Hydroelectric Accounting.	44
3.26	Variable Head Size.	45
3 • 2 7	Pumped Hydro Accounting.	45
3.28	Minimum River Flows.	45
3.29	Hydraulic Coupling.	45
3.30	Hydro Usage Quotas.	46
3.31	Nuclear Usage Quotas.	46

	3.32	Storage Quotas.	46
	3.33	Must Run Quotas.	46
	3.34	Fuel Constraints.	47
	3.35	Fossil Fuel Usage Quotas.	47
	3.36	Fuel Switching.	47
	3.37	Solution Techniques.	48
CHAPTER	FOUR	DYNAMIC PROGRAMMING	50
	4-1	Backward Dynamic Programming.	53
	4.2	Forward Dynamic Programming.	56
CHAPTER	FIVE	PROGRAM DESCRIPTION	59
	5.1	Problem Formulation.	60
	5.2	Program Description.	65
	5.2.1	Main Program.	66
	5.2.2	Sorting Subroutine.	67
	5.2.3	Start Up Cost Subroutine.	67
	5.2.4	Economic Dispatch Program.	68
	5.2.5	Dynamic Programming Program.	72
	5.2.6	Minimum Subtotal Cost Subroutine.	75
CHAPTER	SIX	RESULTS AND CONCLUSIONS	86
	6.1	Discussion of Results.	86
	6.2	Conclusions.	92
	6.3	Suggestions for Future Studies.	95
REFERENC	CES		97
APPENDIX	ONE	ECONOMIC DISPATCH OF THERMAL	
		GENERATING UNITS.	10

viii

APPENDIX TWO	START UP AND SHUT DOWN COSTS.	105
APPENDIX THREE	INPUT DATA OF THE PROGRAM.	109
APPENDIX FOUR	PROGRAM LISTING.	124
APPENDIX FIVE	RESILTS OF PROCESM IN THIRD TOTAL	100

LIST OF FIGURES

FIGURE	No.		Page
3.1		RVES OF FOSSIL FUELED UNIT VALVE POINT VARIATIONS.	36
3.2.a	UNIT EFFICI	IENCY AND HEAT RATE CURVE.	39
3.2.ъ	UNIT INCREM	MENTAL HEAT RATE CURVE FOR JT-OUTPUT CURVE.	39
3.2.c	UNIT INCREM	MENTAL HEAT RATE CURVE FOR PUT-OUTPUT CURVE.	40
3.3	WEEKLY NATU WITH PENALT	URAL GAS CONTRACT MODELING CIES ON UNDER-USE AND OVER-USE.	47
4.1	PATHS BETWE	EN STATES AT DIFFERENT STAGES.	52
4.2	FLOW CHART	FOR BACKWARD DYNAMIC PROGRAMMING.	55
4.3	e u	" FORWARD " ".	57
5.1	PATHS BETWE	EN TWO SUCCESSIVE STAGES.	68
5.2	• •		73
5.3	FLOW CHART	FOR THE MAIN PROGRAM.	76
5.4	# #	" " SORTING SUBROUTINE.	78
5 • 5		" START UP COST SUBROUTINE.	79
5.6	н н	" ECONOMIC DISPATCH PROGRAM.	80
5.7	н н	" DYNAMIC PROGRAMMING PROGRAM.	83
5.8	н и	" MIN. SUBTOTAL COST SUBROUTINE.	85
6.1	OPTIMUM PATE	H OF THIRD TRIAL.	93
6.2	HOURLY LOAD CURVES AND T	DEMAND AND INSTALLED CAPACITY THE TOTAL INSTALLED CAPACITY LINE.	9 4

GLOSSARY OF TERMS

SYMBOL	DESIGNATION	UNITS
A(I),B(I),	The coefficients of the unit's	
C(I)	input-output equation.	
CSTF(I)	Cold start up factor of unit I.	Gcal
D(L1),E(L1)	Constants used in determining Y.	
ECFC(I)	Unit economic fuel cost.	LE
ECLP(I)	Unit economic low power output.	MW
ECHP(I)	Unit economic high power output.	MW
FC(L1,T)	Fuel cost of running the sorted	
	units at state Ll and time T.	LE
FC1(I)	Fuel cost of running unit I.	LE
I	A counter referring to the	
	unit's number.	
L1	A counter referring to the state	
	of units at stage T.	
L2	A counter referring to the state	
	of units at stage (T-1).	
LOPT(T)	The optimum state at stage T.	
M(T)	The optimum number of units at	
	optimum state LOPT(T).	
MNTC	Minimum total cost.	LE
MNTC1(L1,L2)	Minimum subtotal cost between	
	points $(L2,T-1)$ and $(L1,T)$	LE
MXPD	Maximum power demand.	MW
N	Total number of available units.	
NM1(T)	Number of units scheduled to run	

	at time T to meet the load.	
P(I)	Power output of unit I.	MW
PD(T)	Power demand at time T.	MW
STC(I)	Start up cost of unit I.	LE
STM(I)	Station code of unit I.	
r	A counter referring to the hour	
	under study.	
TC(L1,T)	The total cost at state Ll and	
	stage T.	LE
TC1(L1,L2)	The subtotal cost between the	
	states L2 and L1.	LE
TCP1A	The new total power capacity	
	of the units.	MW
TCP(I)	Total capacity for a certain	
	group of units.	MW
TSTC(L1,L2)	Total start up cost required to	
	move from state L2 in stage	
	(T-1) to state L1 in stage T.	LE
TT	Total time period under study.	hrs.
UAFC(I)	Unit average fuel cost.	LE/MW
UFCF(1)	Unit fuel cost factor.	LE/Gcal
UMNP(I)	Unit minimum power output.	MW
UMXP(I)	Unit maximum power output.	MW
UNM(I)	Name of unit I(either GT or ST).	
Y	A symbol referring to incremental	
	fuel cost instead of $oldsymbol{\lambda}$.	

CHAPTER ONE

INTRODUCTION

1.1- Scope of the Thesis:

The past few decades have seen a vastly rising demand on electric energy allower the world. Heavy usage of steam and gas turbine units in electricity generation to meet the rising demand has in turn increased extremely the consumption of petroleum products.

Due to limited resources of fossil fuels, research is now directed towards the usage of renewable energy resources on one hand and the minimization of the consumption of classical fuels on the other.

In the latter direction, efforts are being made to increase the thermal efficiency of the generating units and to achieve reasonable results in the field of optimum generating unit commitment scheduling. The economic load sharing (the subject of this thesis) has become particularly important in the last 30 years.

Previous research and studies have shown the dependance of the fuel costs minimization problem upon both the different mathematical approaches, such as integer programming and dynamic programming, and the old methods, such as heuristic approach and priority lists.

Some of the research, which have considered the mathematical approaches, have only mentioned in general the ability of applying these approaches, but they did not show any

application for these methods. Another group of research have shown a limited and restricted applications for it.

A third group of research, which have dealt with the heuristic approaches and priority lists, showed that these methods when applied gave considerable results.

This study presents a program for the thermal generating unit commitment problem in Egypt applying the dynamic programming as a preferred solution technique for this problem.

The study considered the actual data for the existing thermal generating units in the Egyptian power system.

1.2- Outline of the Thesis:

The thesis presented here consists of six chapters and five appendices.

After this chapter which presents a brief introduction and description for the thesis, comes chapter two which comprises a detailed surveying study indicating the progress of work in the unit commitment field since 1958 and till the time of preparing this thesis.

Following this, chapter three gives an illustrative discussion for all the features, factors and constraints affecting the commitment problem.

Chapter four gives an idea about the dynamic programming approach viewing its history from its first begining in addition to its main types of applications.

In chapter five a detailed description supported by the flow

charts of the program is presented.

Then we arrive to the last chapter which introduces an illustrative discussion for all the results obtained by the program, giving the conclusions obtained by these results and pointing out some recommendations for future studies.

The thesis includes also five appendices. The first presents the economic dispatch problem and its features.

The second appendix gives the different approaches for the start up costs that have been applied in previous research. The third one presents the input data of the available units on the national grid. Appendix number four lists the programmes and their subroutines. Finally, the results of the third trial are tabulated within appendix five.