10.1.14

Ain Shams University Faculty of Engineering

SHEAR DIAPHRAGM WITH LIGHTWEIGHT CONCRETE FILL

Ву

, James

KARIM MOHAMMED M. EL-DASH

624.182 K,M

27766

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in Structural Engineering

Supervised by

Dr. MOSTAFA K. M. ZIDAN

Assoc. Prof. of Struct. Eng. Faculty of Engineering Ain Shams University

Cairo - 1988

115

بسم الله الرحمن الرحيم

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Structural Engineering .

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, from October 1986 to November 1988.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution .

Date : 4/12/1988

Signature : Karım El-Dash

Name : Karim M. M. El-Dash

Examiners Committee

Name and Affiliation

Signature

1- Prof. Dr. SAAFAN ABD EL-GAWAG SAAFAN
Professor of Structural Engineering
Faculty of Engineering
Ain Shans University

5. A Janja

2- Prof. Dr. EL-SAYED BAHAA EL-DIN MASHALY Professor of Structural Engineering Faculty of Engineering Cairo University Jacks

3- Assoc. Prof. Dr. MOSTAFA K. M. ZIDAN
Associate Professor of Structural Engineering
Faculty of Engineering
Ain Shams University

Date: / /198

To

my mother

and my wife

ACKNOWLEDGEMENT

The author wishes to introduce his favourite thanks and sincere gratitude to Dr. Mostafa K. M. Zidan, Associate Proffessor of Structural Engineering, Ain Shams University, Cairo, for his continuous encouragement, powerful assistance and invaluable efforts during whole the work in the presented thesis.

Also the engineers of Al-Alamia Computer company must be acknowledged for their help to complete this analysis on their devices and for their continuous friendly stand.

ð.

ABSTRACT

In the present thesis an analytical study of the elastic behaviour of corrugated steel shear diaphragms with lightweight concrete fill under in-plane forces is investigated using the finite element method through out a comprehensive and powerful computer package which was used to solve the large number of equations of the finite element model, to display the nodal displacements and to obtain the distribution of stresses through the different elements of the model.

The composite diaphragm is simulated in the finite element model by an equivalent orthotropic plate elements. The derivation of the elastic properties of these equivalent orthotropic plate element is given.

A parametric study on the behaviour of the composite diaphragm under different conditions of fastening , and different geometrical and structural parameters is presented .

The effect of using such composite diaphragms as roofs on the structural behaviour and on the internal forces of rectangular steel structures is also presented. A comparison between the use of composite decks and the use

of pure steel diaphragms (without lightweight concrete fill) as roofs of these structures is investigated .

CONTENTS

Pa	ge
ACKNOWLEDGEMENT	i
ABSTRCT	ii
CONTENTS	iv
LIST OF FIGURES i	ix
LIST OF TABLES x	
X X	
NOTATION xi	ii
INTRODUCTION	1
CHAPTER 1 : DEFINITION , CLASSIFICATION AND USES OF SHE	λĐ
DIAPHRAGMS AND PREVIOUS WORK IN THE FIELD OF STE	
DECKING WITH CONCRETE FILL	6
	-
	6
and any other of birecting	9
1.3 Types of diaphragms according to their manner of fastening	9
1.4 Individual shear panel	9
1.5 Main characterists of a	12
1.6 Dogian of whom as a	
1 6 1 Daniel - 1 D 1 1 D 1	12
	14
	18
	20
1.6.4 Modifications to design expressions for sheeting parallel to span of diaphragm	22
1.7 Interpolation C	23
1.0 0+han	26
1.8.1 Effect of light-gage partitions on controling	20
sway of multi-storey buildings	26
	27
1.8.3 Light-gage steel shells	27
1.9 Previous work in the field of stool docking with	

concrete fill
CHAPTER 2 : PROPERTIES OF CORRUGATED STELL SHEET COVERED
WITH LIGHTWEIGHT CONCRETE
2.1 Definition of composite slab
2.2 Advantages of composite slab
2.3 Disadvantages of composite slab 50
2.4 Properties of lightweight concrete 51
2.4.1 Light weight aggregate 52
2.4.1.1 Natural aggregates 53
2.4.1.2 By-product aggregates 53
2.4.1.3 Processed aggregates
2.4.2 Mechanical properties of lightweight concrete 57
2.5 Ensuring composite action 61
2.6 Equivalent orthotropic plate 63
2.7 Determination of elastic constants 69
CHAPTER 3 : FINITE ELEMENT METHOD OF CORRUGATED STEEL
SHEET DECK WITH LIGHTWEIGHT CONCRETE FILL 76
3.1 Finite element method 76
3.2 Structural idealization of the shear diaphragm covered with lightweight concrete fill 79
3.2.1 Marginal members and purlins 80
3.2.2 Sheet panels
3.2.3 Connections 84
3.3 Method of analysis 86
3.4 Solution of equations 87
CHAPTER 4 : EFFECT OF SOME PARAMETERS ON THE ELASTIC
BEHAVIOUR OF COMPOSITE DIAPHRAGM 90
4.1 Aim of the parametric study 90
4.2 Basic analytical model 90

4.4	Effect of fastening system arrangement on the behaviour of composite diaphragm	; 0.0
4.4.	1 Model 1	
4.4.	2 Model 2	
4.4.	3 Model 3	
	4 Model 4	
	5 MOdel 5	114
	6 Models 6 and 7	119
	7 Model 8	120
	General conclusion	
4.5	Effect of other physical and geometrical	135
	harameters	135
4.5.1	Thickness of the concrete fill	136
4.5.2	! Modulus of elasticity of lightweight concrete .	138
4.5.3	Depth of the corrugated steel sheet profile	140
4.5.4	Net thickness of the corrugated sheet	142
4.5.5	Breadth of the concrete rib	142
4.5.6	General conclusion	145
CHAPT	ER 5 : THE USE OF SHEAR DIAPHRAGMS WITH LIGHTWE	r C'um
CONCR	ETE FILL IN STEEL BUILDINGS	146
5.1	Introduction	
5.2	Geometry and properties of investigated steel	146
	building steel	146
5.3	Finite element model for the bulls.	148
5.4	Results of analysis and discussion	149
5.5	Effect of size, stiffness and dimension of all a	143
	barraing on its elastic behaviour	157
5.5.1		158
	Building (B)	160
5.5.3	Results and analysis of buildings (λ) and (B).	160
5.6	Comparison between the effect of composite deck and pure steel deck on the structural behaviour	
	of steel buildings	

CONCLUSION	• • • • • • • • • • • • • • • • • • • •	178
REFERENCES		
APPENDIX (A)		

LIST OF FIGURES

Figu:	re pa	age
1.1	Stressed skin action in pitched and flat roof structures	2
1.2	Some suitable fasteners for stressed skin design	2
1.3	Diaphragm arrangements	5
1.4	Fasteners arrangements	5
1.5	Arrangement of individual panel	6
1.6	Diaphragm flexibility	6
1.7	Equivalent cantilever panel	6
1.8	Sheeted rectangular portal frame shed	19
1.9	Sway and non-sway forces on rectangular portal frame	19
1.10	Definition of frame and panel flexibility	19
	Forces and deflections of components of building	19
	Forces on a sheeted pitched roof portal frame	20
	Definition of frame flexibility for pitched roof portal frame	20
1.14	Determination of equivalent horizontal shear flexibility of panels	20
1.15	Arrangement of testing one-way slab elements	28
	Shear-bond failure relationship	28
	Transeformed composite section	28
	Collapse mechanisms utilized in ultimate strength determination by yield line analysis	38
1.19	Floor system using studs	38
2.1	Devices ensure the composite action of the steel deck	62
2.2	Structurally and elastically orthotropic plates	62
2.3	Specially and generally orthotropic plates	68
2.4	Typical steel-deck with concrete fill cross section	
3.1	Beam element showing degrees of freedom	72
3.2	Arrangement of plate element	81
3.3	Modeling fasteners	81
4.1	Arrangement of joints of the basic model	85
	2 20-men of the Dayle Wodel ''''	91

		Page
4.2	Typical cross section of the basic model	91
4.3	Normal forces in the marginal members of the basic model	96
4.4	Distribution of stresses parallel to the load in the basic model	97
4.5	Distribution of stresses perpendicular to the load in the basic model	
4.6	Arrangement of fasteners in the different models	98
4.7	Normal forces in the marginal members of model 1	100
4.8	Distribution of stresses parallel to the load in model 1	
4.9	Distribution of stresses perpendicular to the	104
4.10	Normal forces in the marginal members of model 2	105
4.11	Distribution of stresses parallel to the load in model 2	
4.12	Distribution of stresses perpendicular to the load in model 2	108
4.13	Normal forces in the marginal members of model 3	111
4.14	Distribution of stresses parallel to the load in model 3	111
4.15	Distribution of stresses perpendicular to the load in model 3	
4.16	Normal forces in the marginal members of model 4	
	Distribution of stresses parallel to the load in	
4.18	model 4	
4.19	Normal forces in the marginal members of model 5	110
4.20	Distribution of stresses parallel to the load in model 5	
4.21	Distribution of stresses perpendicular to the load in model 5	122
4.22	Normal forces in the marginal members of model 6	
4.23	Distribution of stresses parallel to the load in model 6	126
4.24	Distribution of stresses perpendicular to the load in model 6	
4.25	Normal forces in the marginal members of model 7	