1501112

EFFECT OF SECONDARY MEMBERS ON THE STABILITY OF SINGLE AND MULTI-STOREY FRAMES

BY

GAMIL FOUAD ISKANDAR

B.Sc.1979, Structural Division

Ain Shams University

A Thesis Submitted to the Faculty of Engineering
Ain Shams University

In Partial Fulfilment
For The Degree of Master of Science

In Structural Engineering

Supervised By

Prof. Dr. Adel Helmy Salem
Dean of Faculty of Engineering

Ain-Shams University

Dr. Moustafa Korashy
Assistant Prof. of Structural
Engineering
Ain Shams University

Cairo 1988

TO MY DEAR SISTER.....

SUPERVISORS

PROF. DR. ADEL H. SALEM

Dean of Faculty of Engineering

Ain Shams University

DR. MOSTAFA KORASHY

Assistant Prof. of Structural Engineering

Ain Shams University

EXAMINERS COMMITTEE

EFFECT OF SECONDARY MEMBERS ON THE STABILITY OF SINGLE AND MULTI-STOREY FRAMES

BY

GAMIL FOUAD ISKANDAR

APPROVED BY

- PROF. DR. KAMAL HASSAN MOHAMMAD AIN SHAMS UNIVERSITY.
- PROF. DR. MOSTAFA AHMAD SWEILAM ALEXANDRIA UNIVERSITY.
- 3. PROF. DR. ADEL HELMY SALEM AIN SHAMS UNIVERSITY (SUPERVISOR)
- 4. ASSISTANT PROF. DR. MOUSTAFA KORASHY
 AIN SHAMS UNIVERSITY

معزر عادولم محار

COMMITTEE IN CHARGE

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Structural Engineering.

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, from Nov., 1983 to Dec., 1988.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : Dec. 88

Signature : Daniel Ishondo

Name : Gamil Fouad Iskandar

ACKNOWLEDGEMENTS

Central Library - Ain Shams University

ACKNOWLEDGMENTS

The author wishes to express his deep gratitude and appreciation to Prof. Dr. ADEL H. SALEM, Dean of Faculty of Engineering, Ain Shams University, for his valuable contributions, previous advice and encouragement during the course of this study and the compilation of this thesis.

Grateful acknowledgment is due to Dr. MOSTAFA KORASHY Asst. Professor of Structural Engineering, for his true help, constant guidance and considerable suggestions which brought this work to a successful ending.

Thanks are also due to Prof. Dr. KAMAL HASSAN, Prof. Dr. HASSAN OSMAN and all members of Staff of the Metallic Constructions Group, Structural Engineering Dept., Ain Shams University, for their encouragement and valuable advice during the preparation of this thesis.

Finally, the author wishes to extend his thanks to Dr. TAWFIK UWAYDAH of Dar Al Handasah Consultants (Shair & Partners) and Dr. PETER WAGNER of Ferrometalco for the sincere encouragement and advice.

The fruitful discussions and suggestions of the author's colleagues, who can not be individually acknowledged, have contributed remarkably to this study

Central Library - Ain Shams University

1

TABLE OF CONTENTS

			TABLE OF CONTENTS	Page
			•	
ACKNOLWEDGEMENTS			í	
TABLE OF	CONT	ENTS		ii
LIST OF N	TATO	ions		vi
LIST OF F	IGUR	ES		ix
INTRODUCT	ION			xvi ii
CHAPTER (1)	METHODS	OF ANALYSIS	1
1	.1.	INTRODU	CTION	1
1	.2.	GENERAL	ASSUMPTIONS	1
1	.3.	DIRECT	METHOD OF ANALYSIS	3
		1.3.1.	OPERATIONS OF ROTATION AND	
			TRANSLATION OF AXIALLY LOADED	
			MEMBERS	5
		1.3.2.	SUPERPOSITION OF THE STATES OF	
			SWAY	5
1	L.4	STIFFNE	SS METHOD	7
		1.4.1.	STIFFNESS MATRIX FOR AN INDIVIDUA	L
			MEMBER	9
		1.4.2.	STIFFNESS MATRIX FOR A COMPLETE	
			FRAME	13
		1.4.3.	GENERAL REMARKS	14
		1.4.4.	FLOW CHART	16
CHAPTER	(2)	THE EFF	FECT OF SECONDARY BEAMS ON THE	
		SWAY B	UCKLING LOADS OF SINGLE AND MULTI	
		STOREY	RECTANGULAR FRAMES AND PITCHED	
		ROOF FI	RAMES	17

	III	Page
2.1.	INTRODUCTION AND CONCEPT	17
2.2.	SINGLE AND MULTI-STOREY REACTANGULAR	
	FRAMES	23
	2.2.1. SINGLE STOREY REACTANGULAR FRAMES.	23
	2.2.2. MULTI-STOREY RECTANGULAR FRAMES	24
	2.2.2.1. TWO-STOREY RECTANGULAR	
	FRAMES	27
	2.2.2. FOUR-STOREY RECTANGULAR	
	FRAMES	29
	2.2.2.3. SIX STOREY RECTANGULAR	
	FRAMES	3 3
	2.2.2.4. EIGHT STOREY RECTANGULAR	
	FRAMES	33
	2.2.2.5. TEN STOREY RECTANGULAR	
	FRAMES	33
	2.2.3. EFFECT OF THE AXIAL DEFORMATION ON	
	MULTI-STOREY FRAMES (CASE OF 10	
	STOREY-FRAME)	43
2.3.	MULTI-BAY MULTI-STOREY RECTANGULAR	
	FRAMES	49
2.4.	FIXED-BASE PITCHED-ROOF FRAMES	62
	2.4.1. ELASTIC CRITICAL LOADS OF FAMILY	
	OF FRAMES (A) $H/L = 0.25$	64
	2.4.2. ELASTIC CRITICAL LOADS OF FAMILY	
	OF FRAMES (B) $H/L = 0.5 \dots$	64
	2.4.3. ELASTIC CRITICAL LOADS OF FAMILY	
	. , ,	65
C	entral Library - Ain Shams University	

		IV.	Page
	2.5.	DISCUSSION OF RESULTS AND CONCLUSIONS	81
		2.5.1. DISCUSSION OF RESULTS	81
		2.5.2. CONCLUSIONS	. 83
CHAPTER	(3):	THE EFFECT OF KNEE BRACES ON THE	
		STABILITY PITCHED ROOF FRAMES	84
	3.1.	INTRODUCTION	84
	3.2.	STABILITY OF FIXED-BASE PITCHED ROOF	
		FRAMES PROVIDED WITH KNEE BRACES	86
	3.3.	STABILITY OF FIXED-BASE PITCHED ROOF	
		FRAMES PROVIDED WITH KNEE BRACES	102
	3.4.	EFFECT OF KNEE BRACES ON THE STABILITY	
		OF MULTI-BAY PITCHED-ROOF FRAMES	112
		3.4.1. APPLICATION TO THE CASE OF TWO	
		BAY HINGED-BASE PITCHED-ROOF	
		FRAMES	112
		3.4.2. DISCUSSION OF RESULTS	. 117
	3.5.	CONCLUSIONS	. 130
CHAPTER	(4):	THE EFFECT OF TRANSVERSE TIES ON THE	
		STABILITY OF PITCHED ROOF FRAMES	, 132
	4.1.	INTRODUCTION	. 132
	4.2.	EFFECT OF TRANSVERSE TIES BETWEEN EAVES	
		ON THE STABILITY OF PICHED-ROOF FRAMES.	. 134
	4.3.	EFFECT OF VARIATION OF THE LOCATION OF	
		THE TIE WITH RESPECT TO THE HEIGHT OF	
		THE FRAME	. 144

Central Library - Ain Shams University

Page

	4.3.1. EFFECT OF CHANGING THE LOCATION	
	OF TRANSVERSE TIES ON THE	
	STABILITY OF PITCHED ROOF	
	FRAMES HAVING THE RATIO H/L =	
	0.25 (FAMILY "A")	144
	4.3.2. EFFECT OF CHANGING THE LOCATION	
	OF TRANSVERSE TIES ON THE	
	STABILITY OF PITCHED ROOF FRAMES	
	HAVING THE RATIO $H/L = 0.5$	
	(FAMILY "B")	151
	4.3.3. EFFECT OF CHANGING THE LOCATION	
	OF TRANSVERSE TIES ON THE	
	STABILITY OF PITCHED ROOF FRAMES	
	HAVING THE RATIO H/L = 1.0	
	(FAMILY "C")	157
4	.4. DISCUSSION OF RESULTS AND CONCLUSIONS .	157
CHAPTER (5): THE EFFECT OF TRANSVERSE TIES ON THE	
	STABILITY OF SAW TOOTH FRAMES	167
5	.1. INTRODUCTION	167
5	.2. BUCKLING LOADS FOR SAW-TOOTH FRAMES	
	PROVIDED WITH TRANSVERSE TIES AND	
	HAVING VARIABLE ANGLES OF INCLINATION	
	OF THE RAFTER	167
	5.2.1. FRAMES HAVING THE R.H.S. RAFTER	
	INCLINATION $\emptyset = 50$ DEGREES Central Library - Ain Shams University	169

	v∕r	<u>Page</u>
5.	2.2. FRAMES HAVING THE R.H.S RAFTER	
	INCLINATION $\emptyset = 70$ DEGREES	176
5.	2.3. FRAMES HAVING THE R.H.S. RAFTER	
	INCLINATION $\phi = 90$ DEGREES	
	(UPRIGHT)	177
5.3. CC	ONCLUSIONS	190
CHAPTER (6) CON	NCLUSIONS AND SUMMARY OF RESULTS	191
REFERENCES		193
APPENDIX I CO	OMPUTER PROGRAMME FOR THE DETERMINATIO	N
O	F THE CRITICAL BUCKLING LOAD OF RECTA	N-
GI	ULAR FRAMES USING THE DIRECT METHOD OF	
Ai	NALYSIS	196
APPENDIX II. C	OMPUTER PROGRAMME FOR THE DETERMINATIO	N
0:	F THECRITICAL BUCKLING LOAD OF PITCHED	
R	OOF PORTAL FRAMES USING THE STIFFNESS	
М	ETHOD OF ANALYSIS	200

*

LIST OF NOTATIONS