
A Study of the Mechanisms of Cosmic Gamma Ray Production in the Galaxy-

Thesis

Submitted for Partial Fulfillment of the Requirements For M.Sc. Degree(*Physcis*).

539.252

By

Hala Saad Zaghloul Mohamed Khaleel (B. Sc.)

To

The Faculty of Science Ain Shams University

Cairo-Egypt
1990

بسم الله الرحمن الرحيم

رالحَمْدُ لِلْهِ الْجَوْدِ وَمَاكِنَا لِمُوانَا لِمُوانَا الْمُوانِ وَمَاكِنَا لِنَهْتُدِي لَوْلًا أَنْ هُجَانًا الله،

Acknowledgements

The author is thankful to Prof. A.H. Moussa, Head of the Physics Department, for his kind interest and encouragement.

The work presented in this thesis has been done under the supervision of $\operatorname{\mathcal{P}rof}$. A. Goned.

The author would like to express her sincere gratitude to Prof. A. Goned for suggesting the present work and for his supervision and continuous advices, and encouragements.

The author is thankful to Dr. A.E. Wahdan for his kind help.

The author wishes to thank her colleagues of the Cosmic Ray Group, particularly, Ms. E. A. El-Khateeb, for their willing assistance. Thanks are also due to the staff of the Ain Shams Computer Center for their help.

CONTENTS

		Page			
ABST	RACT	v			
SUMM	SUMMARY				
INTR	ODUCTION	1			
	CHAPTER (1)				
	THE GALACTIC AND EXTRAGALACTIC COSMIC				
	GAMMA RAY FLUX				
1.1.	Introduction	5			
1.2.	A Picture of the Galaxy	6			
1.3.	Discription of the Galaxy	7			
	1.3.1. General	7			
	1.3.2. Structure of the Galaxy	8			
1.4.	Highlights of Astrophysical Gamma-Rays	9			
	1.4.1. General	9			
	1.4.2. Galactic Gamma-Ray Lines	1 3			
	a- Matter-Antimatter Annihilations	1 3			
	b- Neutron Capture Reactions	13			
	c- Radioactivity	1 5			
	d- Landau Transition	1 5			
	1.4.3. The Gamma Ray Continuum	1 5			
	i- Electrons	1.5			
	a- Annihilation in Fight	1 5			
	b- Bremsstrahlung	1 6			
	c- Inverse Compton Scattering	16			
	d- Synchrotron Emission	17			
	e- Curvature Radiation	1 7			
	ii- Protons	1 5			
	iii- P̄ P Annihilations	1.5			
	iv- Black Body Radiation and Thermal Bremsstrahlung	1.9			
1.5.	Gamma-Ray Line Astronomy	20			
	1.5.1. General	20			
	1.5.2. Gamma-RAy Lines from the ISM	21			
	1.5.3. The 511 KeV Line from the Galactic Center	23			
	1.5.4. Gamma-Ray Lines from other Galactic Objects	26			
	a- SS 433	26			
	b- The CRAB Pulsar and Nebula	27			

			Page		
	1.5.5.	Gamma-Ray Lines from Extragalactic Objects	28		
		a- Lines from Near-Normal Galaxies	28		
		b- Gamma-Ray Lines from Centaurus A	29		
		c- Gamma-Ray Lines from other Galaxies	29		
1.6.	Discre	te Gamma-Ray Sources	30		
	1.6.1.	Gamma-Ray Pulsars	30		
	1.6.2.	The 2CG Gamma-Ray Source Catalogue	32		
	1.6.3.	Cygnus X-3	3 4		
	1.6.4.	Geminga	34		
1.7.	The Di	ffuse Galactic Emission	35		
	1.7.1.	General Remarks	35		
	1.7.2.	Gas in Interstellar Medium	36		
	1.7.3.	Cosmic Ray Origin	38		
	1.7.4.	Relevance of Cosmic Gamma-Rays to the Origin of			
		the Cosmic Radiation	41		
1.8.	Cosmic	Ray Spatial Distribution	43		
	1.8.1.	Distribution of Emissivity in the Galaxy and			
		Radial Distribution of Cosmic Rays	43		
	1.8.2.	Models for the Cosmic Ray Gradients	45		
1.9.	Extraga	alactic Gamma Rays	46		
	1.9.1.	General	46		
	1.9.2.	Extragalactic Y-Rays from Discrete Sources	47		
	1.9.3.	The Diffuse Extragalactic Flux	49		
		CHAPTER (2)			
		PRODUCTION OF ASTROPHYSICAL GAMMA RAYS			
		FROM NEUTRAL PION DECAY			
2.1.	Introd	uction	52		
2.2.	High E	nergy Hadron Production and Inclusive Reactions	53		
2.3.	Repres	entation of Production Cross Section	5.5		
2.4.	Parame	Parameterization of Cross-Section for Charged Pions			
2.5.	Deriva	Derivation of the Integrated Charged Pion Cross Sections			
2.6.	The En	ergy Spectrum of Neutral Pions	62		
2.7.	Astrophysical Production of Y-Rays from To Decay				
2.8.	Result	s for the Invariant Cross Section for Pions	64		
2.9-	Calcul	ation of Y-Ray Emissivity from T°-Decay	6.7		

		Page
	CHAPTER (3)	
	PRODUCTION OF GAMMA RAYS BY COSMIC RAY	
	ELECTRONS IN THE INTERSTELLAR MEDIUM	
3.1.	Introduction	73
	Non-Thermal Electron Bremsstrahlung in the Interstellar	, ,
	Gas	7.4
	3.2.1. General	74
	3.2.2. Processes of Third and Higher Orders in e ²	76
	3.2.3. Radiation Emitted During Collisions	76
3.3.	Bremsstrahlung Differential Cross-Section	77
	3.3.1. General	77
	3.3.2. Low-Frequency Limit	78
	3.3.3. Weizsaker-Williams Approach	80
3.4.	Gamma-Ray Emissivity from Electron Bremsstrahlung	84
	3.4.1. General	84
	3.4.2. The (Interstellar) Electron Spectrum	85
	a. Ambient Electron Spectrum	85
	b. Two Component Leaky Box Model (LBM)	85
	3.4.3. The Differential and Integral Bremsstrahlung	J. J
	Emissivities	89
	i- Interstellar Gas Distribution	91
	ii- The Local Spectrum of the Projectile Electrons	
	a. A Single Power Law Electron Spectrum	93
	b. A Two-Slope Electron Spectrum	95
	c. General Case	97
	3.4.4. Results and Discussions	99
3.5.	Astrophysical Production of Y-Rays by Inverse Compton	
	Scattering	99
	3.5.1. General Remarks	99
	3.5.2. Relativistic Kinematics in Compton Scattering	101
	3.5.3. Electron Photon Scattering in the CED (Thomson	
	Scattering)	104
	3.5.4. Total Scattering Rate in the QED (Klein-Nishina	
	Formula)	134
3.6.	Gamma-Ray Emissivity from ICS Process	106
	3.6.1. General	106

			Page			
	3.6.2.	Target Photon Fields	107			
	3.6.3.	Derivation of ICS Emissivity	110			
3.7.	Result	s and Discussion	113			
3.8.	Relati	ve Contribution of Various Processes to the Flux				
	of Cos	mic Gamma-Rays	118			
		CHAPTER (4)				
		COSMIC RAY GRADIENTS IN THE GALAXY				
FROM GAMMA-RAY OBSERVATIONS						
4 1	Introdu	uction	121			
4.2.		ffuse Gamma-Ray Flux	122			
		General Garage D. D. S.	122			
		The Integral Gamma-Ray Emissivity	123			
		The Gamma-Ray Intensity	124			
		Longitude and Latitude Profiles	124			
	4.2.5.	The Radial Distribution of Cosmic Rays in the				
		Galactic Plane	127			
		Angular Resolution of Detector	129			
4.3.		lactic Y-Ray Distribution and the Radial Cosmic				
	-	adient	130			
		General	130			
		The Unfolding Method	131			
	4.3.3.	The Line-Of-Sight Segment Contribution	135			
	4.3.4.	Simulated Longitude and Radial Distributions:				
		(Test of the Unfolding Method)	139			
	4.3.5.	Gamma-Ray Line Profile Using Least Square System	142			
	4.3.6.	Relative Emissivity and Cosmic Ray Distributions				
		(Using the Unfolding Method)	144			
4.4.	Models	for Cosmic Ray Spatial Distribution	148			
	4.4.1.	General	148			
	4.4.2.	Super Nova Remnant (SNR) Model	149			
		a- General	149			
		b- SNR Model for Cosmic Ray Gradients	150			
	4.4.3.	Results for Gamma-Ray Longitude Profiles	152			
4.5.	Energy	Dependence of Cosmic Ray Gradients	158			
4.6.	Discus	sion and Conclusion	159			
raaaa	RENCES	• • • • • • • • • • • • • • • • • • • •	1 67			
		ARY	163			

Abstract

A theoretical study has been made of the diffuse gamma rays produced through electromagentic and nuclear interactions of cosmic rays with matter and radiation in the interstellar medium of the Galaxy.

A detailed mathematical formulation has been made for the different processes contributing to the production of the diffuse gamma ray flux. The results for the calculations of the emissivities using the different interaction processes over the energy range $10^{-3} \le \mathcal{E}_{\gamma} \le 10^9$ GeV, and the contribution for each process are reported.

The emissivity results and the observed y-ray emission near the Galactic plane have been used to search for possible spatial gradients of cosmic rays in the Galaxy. Cosmic ray gradients correlated with Supernovae Remnant distributions seem to be in good agreement with observations. The derived cosmic ray radial distribution strongly implies that cosmic ray protons with energies 1-10 GeV are of Galactic origin.

SUMMARY

SUMMARY

A theoretical study has been made of the different mechanisms for Cosmic Gamma rays production through electromagnetic and nuclear interactions of cosmic rays with matter and radiation in the interstellar medium of the Galaxy.

Different processes contributing to the production of gamma flux have been investigated in detailed mathematical formulation. The relevant processes were the decay of π ° mesons produced in high energy nuclear interactions of cosmic ray nuclei with interstellar matter. Bremmstrahlung of cosmic ray electrons as well as Inverse Compton Scattering of electrons on photon fields in the Galaxy. The results for the new set of calculations for the emissivities for each process cover the energy range 10^{-3} \langle F_{γ} \langle 10^{9} GeV and are given as follows:

- (1) For π ° emissivity at energies E < 100 GeV, a new parameterization has been used to correct the invariant cross-section and results indicates good agreement with observations. This gives a differential emissivity peaking at 67.5 MeV corresponding to the energy of gamma rays when the pions decay at rest, and the spectrum is symmetric about this energy value.
- (2) Taking the injection spectrum of electrons near their sources (local interstellar electron spectrum) and using a Leaky Box Model (LBM) as well as the ambient electron spectrum, the Bremsstrahlung and Inverse Compton Sctterming emissivities were derived. The results obtained indicate an agreement at low energy for the two different electron spectra. The results also indicate the dominance of these two processes (BR and ICS) in the energy regions $E_{\gamma} < 0.01$ and $E_{\gamma} > 10$ GeV respectively.
- (3) The reltive contribution of protons to the total emissivity is found to be about 56% for E $_{\gamma}$ > 35 MeV and about 74% for E $_{\gamma}$ > 100 MeV.

To search for possible spatial gradients of cosmic rays in the Galaxy, we have used the emissivity results, and the experimental (observed) longitudinal flux. An unfolding technique has been developed and used to reconstruct the radial distribution of emissivities from

the longitude profile of γ -rays. Estimates of the Hydrogen gas densities are then used to determine the radial distribution of cosmic rays. The results obtained bin this respect are as follows:

- a) There are marked gradients for cosmic rays in the inner Galaxy with the cosmic ray intensity in the region 3-7 Kpc being 3-4 times that locally.
- b) There are indications for a higher gradient for lower energy cosmic rays.
- c) There is a minimum in both emissivity and cosmic ray distribution utions at R \simeq 9 Kpc corresponding to a dip in the longitude distribution of Y-rays near & \simeq 60°. This minimum is indicative of long path lengths through the inter arm region between the Sagittarius and Orion arms.
- d) The results point strongly to a Galactic origin for cosmic rays of energies 1--10~GeV which could be related to supernova remnant (SNR) or pulsar distributions.
- e) There are indications for a difference between using two different electron spectrum models, the LBM electron spectrum giving higher values.

A supernova remnant model has been used to calculate the gamma ray profiles for comparison with observations taking into account the angular resolution and latitude window of detectors. The main results are as follows:

- 1) The gradients for cosmic rays indicate that a uniform cosmic ray radial distribution in the Galaxy can be excluded for proton energies 1-10 GeV, implying a "galactic" origin in this energy region.
- 2) Radial gradients from the SNR model are in agreement with those obtained by the unfolding methods.
- 3) The gradients are found to decrease with increasing energies and the cosmic ray distribution is possibly quite uniform for gamma ray energies above about 1 GeV.

INTRODUCTION

INTRODUCTION

The bulk of the information about the Galaxy and the Universe, in particular, comes from studying the electromagneting radiation emitted from their different sources.

The spectrum of such radiation covers the widest possible band, ranging from very low frequency radiowaves to extremely high energy gamma-rays.

There has been considerable interest of cosmic gamma rays in the last 10 years, and similar to optical astronomy, radioastronomy, etc., we now have a whole descipline called Gamma-ray Astronomy.

Astrophysical gamma rays form a part of the cosmic radiation falling on top of the earth's atmosphere (the other major parts consist of protons, nuclei, and electrons). Being undeflected in cosmic magnetic fields, detected gamma rays can be traced directly to their original sources and thus provide valuable information about these sources and the interstellar medium within our own Galaxy.

Cosmic Gamma-rays were discovered in 1911. The detection of primary Y-rays has been difficult when high altitude balloons were the only carriers of Gamma detection equipment. With the development of satellites as Gamma detector carriers, valuable information has become available on the intensity distribution of cosmic Gamma rays in the Galaxy as well as

its spectral shape from about 30 MeV to a few GeV. From these experiments, there is now firm evidence for the existence of a Galactic component, mainly from the Galactic plane, beside a diffuse isotropic component probably of extra Galactic origin. Moreover, there are well defined discrete sources like the "Crab Nebula" and the "Vela Pulsar" (e.g. Hermsen et al, 1977) with a possible contribution of 10-40% to the continuum flux (e.g. Protheroe et al, 1979).

The mechanisms by which Gamma-rays are produced in the Galaxy were not studied completely until now. It was believed that most of the high energy (>50 MeV) radiation comes from the decay of neutral pions produced in the collision of cosmic ray nuclei with interstellar gas (mainly hydrogen). However, SAS-II and COS-B satellite measurements of the radiation from the Galactic centre are inconsistent with a pure pion spectrum and indicate contributions from electromagnetic interactions of cosmic ray electrons. These additional processes are mainly non-thermal bremsstrahlung in the interstellar gas and Inverse Compton Scattering (ICS) of low energy photons in star light, 2.7°K microwave background, as well as in the far infrared emitted by interstellar dust.

A question of prime importance concerns the origin of the primary cosmic rays, whether it is Galactic or extragalactic in origin. The recent research in cosmic Gamma rays gives the possibility of drawing conclusions about the origin of low energy cosmic rays. The possibility arises because