2509/Y

Ain-Shams University Faculty of Engineering

ELASTIC STRUCTURAL BEHAVIOUR OF INFILLED PORTAL FRAMES

Вy

Tarek Anwar Taha Ewida

A thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science in Structural Engineering

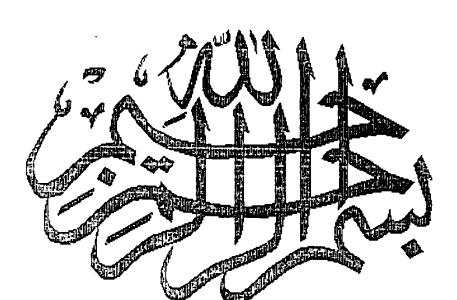
C = 4 1775

Supervised by

Dr. Gamal El-Din Nassar

Prof. of Structural Engineering

Ain Shams University


Dr. Mostafa K. M. Zidan

Ass. Prof. of Structural Engineering

Ain Shams University

27764

Cairo - 1988

Examinars Committee

Name, Title & Affiliation :

1- Dr.Abed El-Hady H. Hosny

Head of Structural Engineering Department

And Prof. of Structural Engineering,

Ain Shams University.

Dr. I. M. Ibrahim

M. Misse

- 2- Dr. Ibrahim Mahfouz M. Ibrahim Head of Civil Engineering Department and Prof. of Structural Engineering, Zagazig University, Banha Branch, Shoubra.
- 3-Dr. Gamal El-Din Nassar

 Prof. of Structural Engineering,

 Ain Shams University.
- 4-Dr. Mostafa K. M. Zidan

 Ass. Prof. Of Structural Engineering

 Ain Shams University.

Date: 04 / /3 /1988

Statement

This dissertation is submitted to Ain Shams University for the degree of MASTER OF SCIENCE in Structural Engineering.

The work included in this thesis was carried out by the author in the department of Structural Engineering, Ain Shams University, from November 1984 to October 1988.

No part of this thesis has been submitted for a degree or a qualification to any other University or Institution.

Date: 4/12/1988

Signature : Tarent

Name : Tarek Anwar Taha Awida

ACKNOWLEDGMENT

I wish to express my sincere thanks to Dr. Gamal El-Din Nassar, Professor of Structural Engineering, Ain Shams University, for his guidance and encouragement.

Also, I wish to express my deep gratitude to Dr.Mostafa K.M. Zidan, Ass. Professor, Structural Engineering, Ain Shams University, for his supervision, help and support.

I wish also to express my thanks to my colleagues at the Structural Engineering Department, Ain Shams University for their cooperation, fruitful discussion throughout the course of this work.

DEDICATION

TO MY MOTHER AND THE

SOUL OF MY FATHER.

CONTENTS

		rage
INTRODUCTION	•	. 1
CHAPTER I : DEFINITION, CLASSIFICATION AND REVIEW OF		
PREVIOUS WORK OF INFILLED FRAMES		. 4
1-1 Introduction		. 4
1-1-1 Types of Infilled Frames in Accordance to		
the Frame		. 4
1-1-2 Types of Infilled Frames in Accordance to		
the Infill Panel		. 5
1-1-3 Types of Infilled Frames According to the		
Interface Condition between the Frame and		
the Infill Panel	•	. 5
1-2 Review of Previous Work		. 6
1-2-1 Non-Integral Infilled Frames	•	. 6
1-2-1-1 Elastic Analysis of Non-Integral Infilled		
Frames	•	. 8
1-2-1-1-a Tests on Infilled Frames		. 8
1-2-1-1-b Equivalent Strut Method		. 8
1-2-2 Fully Integral Infilled Frames		. 15
1-2-2-1 The Equivalent Frame Method		. 15
1-2-2-2 Analysis of Infilled Frames Using Finite		
Element Method		17

1-2-3 Infilled Frames With Opening 22
1-2-4 Plastic Analysis of Infilled Frames 26
1-2-4-1 Plastic Analysis of Fully Integral Infilled
Frames
1-2-4-2 Plastic Analysis of Non-Integral Infilled
Frames
1-2-4-3 Plastic Analysis of Semi-Integral Infilled
Frames
CHAPTER II: APPLICATION OF THE FINITE ELEMENT TECHNIQUE
TO THE ANALYSIS OF INFILLED FRAMES 30
2-1 Introduction
2-2 Description of the Finite Element Model
2-2-1 The Frame Element
2-2-2 The Infill Element
2-2-3 The Interface Element 4
2-2-4 Properties of the Interface Element 4
2-2-5 The Behaviour of the Interface Element 4
2-2-5-1 Infilled Frames With Shear Connectors 49
2-2-5-2 Infilled Frames Without Shear Connectors 49
2-3 Procedure of Solution
2-4 Computer Program

CHAI	PIER III: PARAMEIRIC STUDI ON RECTANGULAR SINGLE BAI				
	SINGLE STOREY INFILLED FRAMES			. 6	60
3-1	Introduction			. 6	60
3-2	Description of the Investigated Examples	•	•	. 6	;1
	3-2-1 Portal Frame	•	•	. ε	51
	3-2-2 Filling Material	•	•	. 6	52
	3-2-3 Interface Conditions			. 6	52
	3-2-4 Loads, Internal Forces and Displacements	•	•	. 6	52
3-3	The Studied Parameters		•	. 6	53
3-4	Parametric Study	•	•	. 6	54
	3-4-1 Effect of Mesh Size in the Finite Element				
	Model			. 6	54
	3-4-2 Effect of Interface Stiffnesses	•		. 6	5 4
	3-4-2-1 Effect of Interface Shear Stiffness			. 6	5 4
	3-4-2-2 Effect of Interface Normal Stiffness			. 6	58
	3-4-3 Effect of Infill Type			. 7	75
	3-4-3-1 Lateral Displacement of the Loaded Point .				75
	3-4-3-2 Frame Lateral Stiffness	•			78
	3-4-3-3 Maximum Moment in the Frame Members			. 8	B 2
	3-4-3-4 Maximum Normal Force in the Frame Top Beam			. 8	33
	3-4-3-5 Principal Compressive Stress at the Loaded				
	Corner of the Infill Panel			. {	38
	3-4-4 Effect of Infill Thickness			. {	B 9
	3-4-4-1 Lateral Displacement of the Loaded Point .			. 8	39
	2.4.4.0 Burns Fals 13.40155				

	3-4-4-3 Maximum Moment in the Frame Members	•		94
	3-4-4-4 Maximum Normal Force in the Frame Top Beam .			96
	3-4-4-5 Principal Compressive Stress in the Loaded			
	Corner of the Infill Panel			97
	3-4-5 Effect of Relative Stiffnesses of Frame Beam			
	and Column			99
	3-4-6 Effect of Rectangularity Ratio of Infill Panel			
	3-4-6-1 Lateral Displacement of the Loaded Point			
	3-4-6-2 Frame Lateral Stiffness			
	3-4-6-3 Maximum Moment in the Frame Members			
	3-4-6-4 Maximum Normal Force in the Frame Top Beam .			
	3-4-6-5 Principal Compressive Stress at the Loaded	•	•	10:
				100
	Corner of the Infill Panel	•	٠	10
CHAI	PTER IV: PARAMETRIC STUDY ON RECTANGULAR SINGLE BAY			
<u> </u>				
	TWO STOREY INFILLED FRAMES			
	Introduction			
4-2	Description of the Investigated Model			
	4-2-1 Portal Frame	•		110
	4-2-2 Filling Material	•	•	110
	4-2-3 Interface Conditions			112
	4-2-4 loads, Internal Forces and Displacements			112
4-3	The Studied Parameters			112
4 – 4	Parametric Study			113
	4-4-1 Effect of Infill Type			

4-4-1-1 lateral Displacement of the Top Loaded Point .	•	113
4-4-1-2 Frame Lateral Stiffness	•	114
4-4-1-3 Maximum Moment in the Frame Intermediate Beam		117
4-4-1-4 Maximum Normal Force in the Frame Top Beam	•	118
4-4-1-5 Maximum Principal Compressive Stress in the		
lower Infill Panel		120
4-4-2 Effect of Infill Thickness		121
4-4-2-1 Lateral Displacement of the Top Loaded Point .		121
4-4-2-2 Frame Lateral Stiffness		124
4-4-2-3 Maximum Moment in the Frame Intermediate Beam		125
4-4-2-4 Maximum Normal Force in the Frame Top Beam	•	127
4-4-2-5 Maximum Principal Compressive Stress in the		
lower Infill Panel		128
4-4-3 Effect of Rectangularity Ratio of Infill Panel .	•	130
4-4-3-1 Lateral Displacement of the Top Loaded Point .		130
4-4-3-2 Frame Lateral Stiffness	•	131
4-4-3-3 Maximum Moment in the Frame Intermediate Beam		134
4-4-3-4 Maximum Normal Force in the frame Top beam		134
4-4-3-5 Maximum Principal Compressive Stress in the		
lower Infill Panel	٠	136
CHAPTER V : COMPARISON BETWEEN THE EQUIVALENT STRUT METHOD		
AND THE FINITE ELEMENT METHOD	•	139
5-1 Introduction		139
5-2 Geometry and Properties of Studied Infilled Frames		139

5-3	Analys	is and	Discuss	ıon	• •	• •	• •	• •	•	•	•	•	•	•	•	•	141
	5-3-1 I	Lateral	Displa	ceme	ent .				•	•	•	•	•	•			141
	5-3-2 I	Lateral	. Stiffn	ess													142
	5-3-3 1	Maximum	Moment	on	Frame				•				•	•			144
	5-3-4 1	Maximum	Normal	For	ce in	r Fra	me :	lop	Bea	m			•			•	144
	5-3-5 1	Maximum	Stress	in	the I	nfil	1 Pa	anel				•				•	146
5-4	Conclus	sion .							•						•		149
CHAI	PTER VI	_: CON	LUSIO N S	ANE	RECO	M EN	DAT:	ONS		•				•	•	•	151
		-	LUSIONS														
6-1	Conclus	- sions			• •					•	•	•				•	151
6-1	Conclus	- sions			• •					•	•	•				•	151
6-1 6-2	Conclus	- sions tions I		 re S	 Studie	es.			•			•				•	151 153

ARABIC SUMMARY

INTRODUCTION

General:-

Wall panels in buildings are used as partitions to separate the dwellings. The system consisting of the frame and the wall panel is called "Infilled Frame" in which the wall panel represents the infill material.

There are several interface conditions between the frame and the infill panel. These interface conditions may be without shear connectors, with shear connectors along the line of contact between the beam and the infill panel only and with shear connectors along the contact line between the frame and the infill panel.

The fact that the measured displacements of such frames are remarkably lesser than the relevant theoretically calculated ones, initiated research work towards the analysis of the effect of infill material on the frame displacements and consequently, on its stability and internal forces.

Taking the effect of the presence of the infill material into consideration in the structural analysis of frames results in increasing the strength of such frames to resist lateral loads of wind and seismic actions compared with the case of bare frame (i.e. without infill).

Objectives :-

The main objectives of the present thesis are as follows:-

1-The accurate calculation of the internal forces and the deformations of portal framed structures subject to lateral loads taking into account the effect of the infill material. This will be done by adopting an improved technique of the finite element procedure. This technique represents with sufficient accuracy the interface condition between the frame and the infill by introducing a modified interface friction element.

2-Carrying out a parametric study on the different parameters affecting the structural behaviour of the infill material in portal frames. This study includes both single and double storey frames in the two cases of infilled frames with and without shear connectors.

3-The comparison between the results of the finite element method using the modified interface friction element and those of the approximate methods (such as the equivalent strut method) proposed by other authors.

Contents :-

The thesis is composed of six chapters as follows:-

In a first Chapter, a definition , classification and review of previous work carried out in the field of infilled