## AIR SHAMS UNIVERSITY FACULTY OF ENGINEERING



# A COMPUTERIZED MACHINING INFORMATION CENTRE FOR TURNING



1621-34 HASSAN AHMED HASSAN AHMED HASSAN

By

33757

A Thesis

Submitted in Fulfillment of The Requirements of the Degree of Ph. D. In Mechanical Engineering

Supervised By

Prof. Dr. M. A. EL-HAKIM

### Examiners Committee

Name, Title, and Affiliation

Signature

Prof. Dr. M. A. El-Hakim
 Prof. of Production Engineering
 Faculty of Engineering, Ain Shams
 University.

· Hades

Prof. Dr. Sabet Rizkallah Gabrial
 Prof. of Machine Design,
 Faculty of Engineering,
 Ain Shams University.

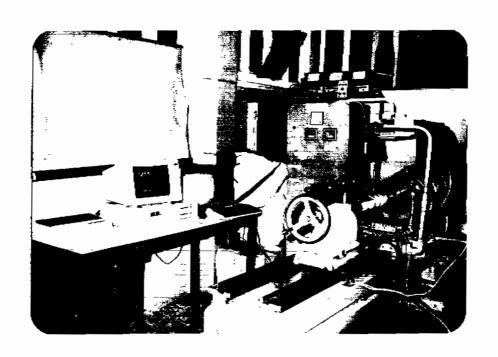
Prof. Dr. M. Sadek Eid,
 Frof of Industrial Engineering,
 Monoton University, Canada.

M Sadek So



#### STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Ph. D. in Mechanical Engineering.


The work included in this thesis was carried out by the author in the department of Production Engineering, Ain Shams University, from 10-11-1986 to 11-10-1990.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institute.

Date :

Signature :

Name : Hassan Ahmed Hassan Ahmed



THE MACHINING INFORMATION CENTRE (MIC)

#### ABSTRACT

The application of computer automated manufacturing systems is rapidly increasing to follow the needs of industry. The speed of information flow in highly automated systems is extremely important as they are critically dependent on the amount of fresh information supplied to them. In the present work, a complete design, implementation, and testing of a computerized Machining Information Center [MIC] is carried out to meet the needs for automatic machinability testing that would overcome the difficulties and expenses of conventional machinability testing methods. MIC consists mainly of a master computer that controls a slave computer, which, in turn, controls an Automated Machinability Testing Unit [AMTU]. The system is protected against unintended events by including a closed loop emergencydetection system. The MIC remarkably decreases the testing time, cost and effort, material and tooling cost, as well as the experimental errors resulting from the unpredicted variation of machining conditions and from human interference. The MIC is recommended for the solution of machining problems, comparative evaluation of different workpiece and tool materials. tools, cutting fluids, ... etc. Moreover, it can be used as an experimental test rig for advanced machinability testing research.

### CONTENTS

| * ABSTRACT                                      | i  |
|-------------------------------------------------|----|
| * NOMENCLATURE                                  | vi |
| * INTRODUCTION                                  | 1  |
| CHAPTER 1. REVIEW OF LITERATURE                 | 3  |
| Statement of the Problem                        | 12 |
| Objective of the Present Work                   | 12 |
| CHAPTER 2. MACHINABILITY CONCEPTS AND CRITERIA. |    |
| 2.1 Basic Concepts and Definitions              | 14 |
| 2.2 Machinability Criteria                      | 18 |
| Cutting Force                                   | 18 |
| Power Consumption                               | 20 |
| Cutting Temperature                             | 21 |
| Tool Life                                       | 23 |
| Chatter                                         | 25 |
| Surface Integrity                               | 27 |
| Economics of Machining                          | 29 |
| 2.3 Optimum Cutting Conditions                  | 31 |
| 2.4 Machinability Reassessment                  | 39 |

| CHAPTER 3.<br>DEVELOPMEN | NT OF THE MACHINING INFORMATION CENTER [MIC].         |    |
|--------------------------|-------------------------------------------------------|----|
| 3.1 Def                  | finition and Basic Functions                          | 40 |
| 3.2 Arc                  | chitecture of the MIC                                 | 43 |
| 3.3 Inf                  | formation Flow Through The MIC                        | 46 |
|                          |                                                       |    |
| CHAPTER 4.               | AUTOMATED MACHINABILITY TESTING UNIT [AMTU].          |    |
| 4.1 Aut                  | comation Hardware                                     | 53 |
| 4.1.1                    | Mechanical Arrangements                               | 53 |
| 4.1.2                    | Electrical Installations                              | 56 |
| 4.1.3                    | Electronic Circuits                                   | 59 |
| 4.1.3.1                  | Speed control of D.C. Motor                           | 59 |
| 4.1.3.2                  | Computer Interfaceing Circuits                        | 68 |
| 4.1.4                    | Transducers                                           | 73 |
|                          | nputer Control of Machinability Testing System        | 75 |
| 4.2.1                    | Cutting Speed Control                                 | 75 |
| 4.2.2                    | Feed Control                                          | 76 |
| 4.2.3                    | Position Control of Cutting Tool Along Workpiece axis | 77 |
| 4.2.4                    | Setting the Depth of Cut                              | 78 |
| 4.3 Aut                  | comation Software                                     | 79 |
| 4.3.1                    | Main AMTU Control Program                             | 79 |
| 4.3.2                    | Computer Network Program                              | 81 |
|                          | Master Computer Automatic Testing Software            | 82 |

| CHAPTER 5. MACHINABILITY INFORMATION CENTER PROCESSOR [MICP].  |     |
|----------------------------------------------------------------|-----|
| 5.1 Machinability Data Bank                                    | 90  |
| 5.1.1 Workpiece Material Data base                             | 90  |
| 5.1.2 Cutting Tool Material Data base                          | 92  |
| 5.1.3 Machine Tool Specifications Data base                    | 93  |
| 5.1.4 Data Base Management System Commands                     | 96  |
| 5.2 Computer-Aided Determination of Optimum Cutting Conditions | 100 |
| 5.2.1 Software Logics                                          | 102 |
| 5.2.2 Workpiece Shape Data Entry                               | 102 |
| 5.3 Testing of New Workpiece Materials                         | 104 |
| 5.4 Quitting the MICP                                          | 106 |
| CHAPTER 6.<br>EXPERIMENTAL TECHNIQUES.                         |     |
| 6.1 AMTU Specifications                                        | 108 |
| 6.2 Cutting Tools                                              | 110 |
| 6.3 Test Specimens                                             | 111 |
| 6.4 Plan of Experiments                                        | 113 |
| 6.4.1 Chatter Testing                                          | 115 |
| 6.4.2 Cutting Force and Cutting temperature Testing            | 117 |
| 6.4.3 Tool Life Testing                                        | 119 |
| 6.4.4 Data Processing                                          | 121 |

CHAPTER 7.
MACHINABILITY TESTING USING THE DEVELOPED SYSTEM.
(A CASE STUDY).

| 7.1 Experimental Results and di                                       | scussion 12        | 7 |
|-----------------------------------------------------------------------|--------------------|---|
| 7.1.1 Cutting Force Relationsh                                        | nips 12            | 7 |
| 7.1.2 Cutting Temperature Rela                                        | tionship 13        | 2 |
| 7.1.3 Tool Life Relationships                                         | 13                 | 4 |
| 7.1.4 Chatter Relationships                                           |                    | 5 |
| 7.2 Economic Evaluation of the                                        | MIC 13             | 7 |
|                                                                       |                    |   |
| * CONCLUSION                                                          |                    | 2 |
| * REFERENCES                                                          |                    | 6 |
| * APPENDICES                                                          |                    | 5 |
| Appendix (1): Optimum Cutting Conditions                              | Algorithm 15       | 5 |
| Appendix (2): Technical Specifications of                             | : Interface III 15 | 9 |
| Appendix (3): Time Response of The Speed and Feed Drives              |                    | 1 |
| Appendix (4): Hardware Specifications of The Master and Slave comput  | ers 16             | 2 |
| Appendix (5): Correction of the Cross Sen Errors of the Force Dyna    | _                  | 4 |
| Appendix (6): Time Responses of The Cut Force Components and Tempe    |                    | 8 |
| Appendix (7): Relationship Between The To Wear and The Axial Force Co |                    | 9 |

<sup>\*</sup> Arabic Summary - Ain Shams University

### NOMENCLATURE

| SYMBOL         | UNITS      | DEFINITION                           |
|----------------|------------|--------------------------------------|
|                |            |                                      |
| A              | mm         | machining allowance.                 |
| a              | mm         | depth of cut.                        |
| b              | mm         | width of cut.                        |
| b <sub>1</sub> | mm         | limiting width of cut.               |
| В              | mm         | flank wear land width.               |
| C1             | L.E.       | machine cost constant.               |
| C2             | L.E.       | tooling cost constant.               |
| Cv             |            | tool life coefficient.               |
| C <sub>o</sub> |            | cutting temperature coefficient.     |
| D              | mm         | average workpiece diameter.          |
| D1             | nm         | initial workpiece diameter.          |
| D2             | mm         | final workpiece diameter.            |
| Dc             | mm         | chucked workpiece diameter.          |
| e              |            | efficiency of the main drive.        |
| ef             |            | efficiency of the feed drive.        |
| Fa             | N          | axial cutting force component.       |
| Fc             | N          | tangential cutting force component.  |
| Fr             | N          | radial cutting force component.      |
| G              |            | operational amplifier gain.          |
| I              | Amp        | electrical current.                  |
| Ksa            | N/mm²      | specific cutting pressure due to Fa. |
| Ksc            | N/mm²ntral | Library i fair Sharms University     |

vii

| Ksr               | N/mm²   | specific cutting pressure due to Fr. |
|-------------------|---------|--------------------------------------|
| Kı                | L.E./hr | labour hour rate.                    |
| K <sub>m</sub>    | L.E./hr | machine cost per hour.               |
| KTP               | L.E.    | tool capital cost.                   |
| K <sub>TC</sub>   | L.E.    | tool change cost.                    |
| $K_{\mathbf{TR}}$ | L.E.    | tool regrind cost.                   |
| L                 | mm      | workpiece length.                    |
| m                 |         | tool life exponent.                  |
| ma                |         | axial force exponent.                |
| mc                |         | tangetial force exponent.            |
| mr                |         | radial force exponent.               |
| n                 | rpm     | spindle rotational speed.            |
| P                 | KW      | power consumed.                      |
| Pm                | KW      | motor rated power.                   |
| r                 | mm      | tool nose radius.                    |
| ទ                 | mm/rev  | feed.                                |
| T                 | min     | tool life.                           |
| v                 | m/min   | cutting speed.                       |
| Vm                | volt    | mean voltage.                        |
| V <sub>t</sub>    | volt    | tacho generator voltage.             |
| Vs                | volt    | output servo voltage.                |
| V <sub>r</sub>    | volt    | computer reference voltage.          |
| α                 | degree  | clearance angle.                     |
| β                 | degree  | tool wedge angle.                    |
| A                 | degree  | rake angle.                          |
| Ø                 | degree  | firing angle.                        |
| δ                 |         | system damping factor.               |

Central Library - Ain Shams University

# viii

| θ          | *C     | cutting temperature.     |
|------------|--------|--------------------------|
| <b>₫</b> . | degree | plan approach angle.     |
| и          |        | coefficient of friction. |

#### INTRODUCTION

introduction of the recent advances in machining The technology necessitates the best utilization of machine tools through the use of the optimum cutting conditions. leading maximum productivity and to manufacturing cost. The optimum values for the machining variables of a given workpiece material with different delivery conditions cannot be established without the provision of detailed machinability information about this specific workpiece material. This can be achieved only by performing a series of machinability tests on this material, processing the obtained data and converting them into useful cutting information. Using conventional methods of machinability testing requires considerable effort, time, and cost. Besides, considerable amount of workpiece and tool consumed in the tests. Accordingly. materials are conventional machinability testing is therefore reduced to one or two tests carried out on selected groups of workpiece and tool materials. This results in insufficient information about the given material which limits the effectiveness of the obtained results.

The present work presents a computerized Machining Information Center [MIC] comprising a computer automated machinability test equipment and a data bank which enables automated machinability testing, machinability data handling and interactive machining problem solving.

Several machining parameters such as the cutting force components, the cutting temperature, the tool life, vibrations, ... etc. are to be simultaneously measured by means of proper transducers which enable the on-line measurement of such parameters. They are then processed to obtain the related machinability data and saved into the machinability data bank. MIC results in considerable savings in the amount of time, effort and cost as compared with conventional machinability testing methods.