14.71 4

GROWTH PATTERN IN CARDIAC PATIENTS IN RELATION TO SOMATOMEDIN AND GROWTH HORMONE LEVELS

Thesis submitted for partial fulfilment of the degree of M.D in Pediatrics

84

VEHIA HUSSEIN

Under the supervision of

Professor

ⁿrofessor

Saadia Abdel Fattah

Sawsan El Sokkary

Frefessor of Pediatrics

A. 2. 13/2 Professor of Pediatrics

Professor

Professor

Hussein El Damasy

Amal Ayoub

Professor of Medicine

essor of Cardiology

FACULTY OF MEDICINE AIN-SHAMS UNIVERSITY 27864

(1987)

ACKNOWLEDGMENT

I feel deeply indebted to Professor SAADIA ABD EL FATTAH, Professor of Pediatrics, who gave me much of her time and her valuable advice throughout the whole work.

I am also grateful to Professor SAWSAN EL SOKKARY, Professor of Pediatrics, for her meticulous supervision, her imprints are obvious among every line in this thesis.

I am thankful to Professor HUSSEIN EL DAMASY, Professor of General Medicine, for his encouragement and help.

My gratitude goes to Professor AMAL AYOUB, Professor of Cardiology for her kind and valuable remarks.

My thanks also go to Mr. Ahmed Amin and Mrs. Samia
El Tohamy, biochemists of the Endocrinology Lab., who
helped me in performing the practical part of this thesis.

Last and by no means the least, I am grateful to my husband Dr. MOHAMED FATHALLAH, Lecturer of Pediatrics, for without his real and continuous help, this work would not have been accomplished.

CONTENTS

		Page
_	INTRODUCTION	
_	AIM OF THE WORK	2
-	REVIEW OF LITERATURE	3
	- Congenital heart disease	3
	- Acute rheumatic fever and rheumatic heart disease	8
	- Factors affecting growth	14
	- Growth hormone	24
	- Somatomedins	35
	- Growth in congenital heart disease	62
	- The effect of chronic heart disease on the	
	growth of children	68
-	SUBJECTS AND METHODS	70
-	RESULTS	82
-	DISCUSSION	124
-	SUMMARY AND CONCLUSION	139
-	REFERENCES	143
-	APPENDIX	178
_	ARABIC SUMMARY.	

C

Abbreviations

- CHD = Congenital heart disease.
- VSD = Ventricular septal defect.
- PDA = Patent ductus arteriosis.
- PEM = Protein-energy malnutrition.
- NGF = Nerve growth factor.
- GH = Growth hormone.
- Sms = Somatomedins.
- Sm-C = Somatomedin-C.
- hGH = human growth hormone.
- hCS = human chorionic somatotropin.
- GHRH = Growth hormone releasing hormone.
- GHIH = Growth hormone inhibitory hormone.
- TSH = Thyroid stimulating hormone.
- c-AMP = cyclic adenosine monophosphate.
- GABA = Gamma amino buteric acid.
- Ca⁺⁺ = Calcium ions.
- RIAs = Radioimmunoassays.
- IGFI = Insulin-like growth factor I.
- IGFII = " " " " " II.
- CSF = Cerebrospinal fluid.
- RNA = Ribonucleic acid.
- Na = Sodium ions.
- K⁺ = Potassium ions.
- NSILA = Non suppressible insulin like activity.
- Sm-A = Somatomedin-A.
- Sm-B = Somatomedin-B.
- MSA = Multiplication stimulating activity.
- RRA = Radioreceptor assay.
- PS = Pulmonary stenosis.
- AS = Aortic stenosis.
- NCHS = National Centre for Health Statistics.
- RHD = Rheumatic heart disease.

INTRODUCTION

INTRODUCTION

Cardiac diseases whether congenital or acquired are a nuisance to human performance. In infants and children, various degrees of growth retardation are commonly found among patients with cardiac diseases particularly those of the congenital type (Linde et al, 1937).

Growth retardation is multifactorial, the cardiac lesion itself may be directly responsible (Abdin et al, 1973), also growth retardation may simply be associated with other factors such as heredity, undernutrition parasitism, liver and kidney diseases. Endocrinopathies might be a contributing factor in these patients (Kerpel-Fronius et al, 1977).

Although growth hormone has impressive growth promoting actions when administered in vivo, it has little or no direct effect on growth of skeletal tissues. Since sulfation factor, later termed somatomedin was first described by Salmon and Daughaday in 1957, considerable speculation has arisen as to the role of this group of growth hormone dependent peptides in various disorders of growth. Since the somatomedins stimulate the in vitro growth of cartilage, and of a variety of cells derived from the extraskeletal tissues, it has been proposed that the growth promoting actions of growth hormone are mediated through this family of peptides (Underwood et al., 1980).

AIM OF THE WORK

AIM OF THE WORK

The aim of this work is to study the growth pattern of children with cardiac diseases whether congenital or rheumatic.

The work also aims at the detection of the possible role of growth hormone and somatomedin in the development of growth retardation due to cardiac diseases.

REVIEW OF LITERATURE

Congenital Heart Disease

Congenital malformations of the heart occur in about eight of every 1000 livebirths, and they represent about 10 percent of all congenital malformations. However, it is difficult to obtain precise incidence data for all congenital heart disease, since signs and symptoms of heart disease may be absent at birth and not be evident until years or decades later (Freed, 1984).

The incidence of congenital heart disease among Egyptian children has been estimated to be 0.6% (Hamed, 1976).

The New England Regional Infant Cardiac Program provides valuable information on the incidence of specific lesions. This is listed in the following table.

Diagnostic Frequencies Among/Infants with Congenital
Heart Disease

Diagnosis	
Ventricular septal defect	15.7
D-Transposition of great arteries	9.9
Tetralogy of Fallot	8.9
Coarctation of aorta	7.5
Hypoplastic left heart syndrome	7.4
Patent ductus arteriosus	6.1
Endocardial cushion defect	5.0
Heteroaxis	4.0
Pulmonary stenosis	3.3
Pulmonary atresia with intact ventricular septum	3.1
Atrial septal defect secundum	2.9
Total anomalous pulmonary venous return	2.6
Myocardial disease	2.6
Tricuspid atresia	2.6
Single ventricle	2.4
Aortic stenosis	1.9
Double outlet right ventricle	1.5
Truncus arteriosus	1.4
L-Transposition of great arteries	0.7
Other heart disease	4.9
Primary pulmonary disease	4.5

Adapted from Fyler, 1980.

Aetiology:

The aetiology of congenital heart disease remains uncertain in most cases. Approximately 8% of congenital heart patients have an aetiologic basis attributable to genetic factors with very little contribution from environment. Also, about 2% have environmental aetiology with little, if any genetic contribution, but the great majority of patients (approximately 90%) are best explained by genetic-environmental interaction (Nora, 1983).

1- Primary genetic factors:

a. Chromosomal causes:

Gross chromosomal anomalies exist in about 5% of patients with C.H.D. (Nora, 1968). For example, patients with Down's syndrome have a high incidence of C.H.D. (about 50%). The most frequent cardiac anomalies in Down's syndrome are endocardial cushion defect, ventricular septal defect, patent ductus arteriosus and atrial septal defect (Spicer, 1984). On the other hand, 99% of patients with trisomy 18 have C.H.D. in the form of VSD, P.D.A. and pulmonary stenosis (Nora, 1983).

The role of the X chromosome in the development of PDA has been studied by many workers, since the frequency of this defect in females is twice that in males. Also, patients with Turner's syndrome (Xo) have often the male

Central Library - Ain Shams University

associated coarctation of the aorta, whereas the (XXXXY) patients have the female associated disorder P.D.A. (Nora, 1983).

Some rare autosomal dominant syndromes are associated with C.H.D. For example, in Marfan's syndrome prolapsed mitral valve and aortic aneurysm are often present (Scott, 1985).

b. Single mutant gene causes:

It is essential to recognize families in which the congenital heart defects are transmitted by Mendilian inheritance, since they are at a higher risk. It is typical that a congenital heart anomaly caused by a single mutant gene will have a 25% recurrence risk if the gene is recessive, and 50% recurrence risk if the gene is dominant (Nora, 1983).

2. Primary environmental factors:

The discovery that Ebstein's malformation is rather frequent among the offspring of mothers exposed to lithium during pregnancy is a new observation worth remembering (Nadas, 1984). The rate of cardiovascular defects in cases of exposure to oral contraceptives in early pregnancy was found to be 21.5/1000 (Heinonen et al, 1977). Fredrick et al (1971), have found a significant increase in septal defects in infants of mothers who smoked during pregnancy. It has been now established that pregnant women who contract