# PELVIC INFLAMMATORY DISEASE AMONG INTRAUTERINE DEVICE USERS

### A Review

Presented to the FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

IN PARTIAL FULFILMENT

FOR THE MASTER DEGREE IN
( OBSTETRICS & GYNAECOLOGY )



By

Bahey Eldin Mahmoud Bassiouni M.B., B.Ch.

SUPERVISED BY :

Dr. Ibrahim Yassin Abo Senna

Ass. Prof of Obstetrics & Gynaecology

Faculty of Medicine

AIN SHAMS UNIVERSITY

Dr. Mohamed Nabegh Almahalawy

Ass. Prof of Obstetrics & Gynaecology

Faculty of Medicine

AIN SHAMS UNIVERSITY

AIN SHAMS UNIVERSITY

1986



# PELVIC INFLAMMATORY DISEASE AMONG INTRAUTERINE DEVICE USERS

A Review

Presented to the Faculty of Medicine
Ain Shams University

In Partial Fulfilment for the Master Degree in Gynecology and Obstetrics

Ву

Bahey Eldin Mahmoud Bassiouni M.B.B.Ch

Supervised by

Dr. Ibrahim Yassin Abo Senna
Assistant Professor of Gynecology and Obstetrics
Faculty of Medicine
Ain Shams University

Dr. Mohamed Nabegh Almahalawy
Assistant Professor of Gynecology and Obstetrics
Faculty of Medicine
Ain Shams University

AIN SHAMS UNIVERSITY
[1986]



# CONTENTS

|                                                                                                  | Page |
|--------------------------------------------------------------------------------------------------|------|
| INTRODUCTION AND AIM OF THE WORK                                                                 | 1    |
| INTRAUTERINE DEVICES                                                                             | 2    |
| PELVIC INFLAMMATORY DISEASE                                                                      | 13   |
| BACTERIOLOGY OF THE UTERUS                                                                       | 46   |
| INCIDENCE AND PREVALENCE OF PELVIC INFLAMMATORY DISEASE IN INTRAUTERINE DEVICE USERS             | 54   |
| PATHOGENESIS OF PELVIC INFLAMMATORY DISEASE IN INTRAUTERINE DEVICE USERS                         | 71   |
| COMPLICATIONS OF PELVIC INFLAMMATORY DISEASE IN INTRAUTERINE DEVICE USERS                        | 79   |
| DIAGNOSIS AND DIFFERENTIAL DIAGNOSIS OF PELVIC INFLAMMATORY DISEASE IN INTRAUTERINE DEVICE USERS | 90   |
| PREVENTION AND CONTROL OF PELVIC INFLAMMATORY DISEASE IN INTRAUTERINE DEVICE USERS               | 104  |
| TREATMENT OF PELVIC INFLAMMATORY DISEASE IN INTRAUTERINE                                         |      |
| DEVICE USERS                                                                                     | 112  |
| THE INTRAUTERINE DEVICE AND ACTINOMYCOSIS                                                        | 125  |
| OTHER CONTRACEPTIVE METHODS AND PELVIC INFLAMMATORY                                              |      |
| DISEASE                                                                                          | 136  |
| SUMMARY                                                                                          | 140  |
| RECOMMENDATIONS                                                                                  | 146  |
| REFERENCES                                                                                       | 152  |
| APARTC CHMMARY                                                                                   |      |

\*\*\*\*\*\*

#### INTRODUCTION AND AIM OF THE WORK

Intrauterine contraceptive devices are commonly used in family planning programms all over the world.

One of the serious complications of intrauterine device use is pelvic inflammatory disease which necessitates modification in their current way of use.

The aim of this work is to revise the available literatures dealing with pelvic inflammatory disease in intrauterine device users, to study the predisposing factors, pathogenesis and complication and to outline the diagnostic and preventive measures and the possible treatment for this type of infection.

Recommendations for the ideal way to decrease the incidence of pelvic inflammatory disease in intrauterine device users and recommendations for further practical research will be proposed.

# INTRAUTERINE DEVICES

#### INTRAUTERINE DEVICES

#### [] History:

Intrauterine devices as a method of contraception has passed through several stages of development.

Southam (1965) reported that in the human the use of contraceptive pessaries was reported in the eleventh century by the islamic scientist Avicenna. During the late nineteenth century stem pessaries were in use. They were technically not intrauterine devices since they did not rest entirely within the uterine cavity. The bulk of the device remained in the vagina while the stem extended through the cervical canal and protruded into the uterine cavity.

Richter (1909) developed a new device. It was ring shaped and made of silk worm gut. Pust (1923) reported that the silk worm threads were also incorporated in a cervicouterine device developed in 1923 by K.Pust who combined the silk worm ring with the other stem pessary.

Siddle (1924) reported that Pust distributed his intrauterine device to other physicians but many refused to use it on the ground that such device would produce pelvic infection. Grafenberg (1931)

reported that the first intrauterine device to be widely used was a ring of gut and silver wire developed by Ernest Gräfenberg. He added that this device became popular in Germany in the late 1920s. Ota,(1934) reported that he introduced gold and gold plated silver intrauterine rings.

Tietze and Lewit (1962) reported that a period came when intrauterine devices were prohibited because of the fear of pelvic infection before the development of antibiotics till late in 1950s when reappraisal of intrauterine devices have been instituted. They added that the Population Council convened the first international conference on intrauterine devices in New York in 1962.

addition to reported that in Lippes (1962) advances in antibiotic therapy that time, the at polyethylene, a biologically of development plastic that could be moulded into any desired configuration was the crucial point to the acceptance of intrauterine devices. He added that the Margulis and the Lippes loop were the first widely used plastic of the intrauterine devices. Jack Lippes States added a transcervical thread to assist

detecting and removing the device and a small amount of barium sulphate to render the device opaque to X-rays.

Segal et al (1965) reported that the Population Council established the Cooperative Statistical Program to undertake a broad evaluation of intrauterine devices and, in 1964 held a second conference.

Hefnawi and Segal (1975) reported that by the 1970 two major reviews of intrauterine device development took place, a workshop sponsored by the Battle Memorial Institute in Seattle in October 1973 a third international conference sponsored by and the Population Council in Cairo in December At both session the focus of attension on intrauterine devices was shifting to the so-called second generation These were the bioactive or medicated devices. the plastic intrauterine which devices in became a carrier for other substances such as metals, hormones or antibleeding agents.

Zipper et al (1969) reported that the first medicated devices were developed by Jaime Zipper and Howard Tatum in which copper wire was wrapped around the T or 7 devices, which had a relatively

improve their contraceptive surface area to They added that shortly thereafter, hormones efficacy. as progesterone were incorporated in various devices the steroids which have proved to deliver some of directly contraceptive pills effective in oral Somewhat later other compounds designed the uterus. associated menstrual bleeding reduce the heavy with intrauterine device use were also incorporated.

### Classification of intrauterine devices:

designed Intrauterine devices have been in a variety of shapes and sizes and of different materials combination thereof. including plastics, metals and Lippes (1982) reported that devices are classified as open or closed depending upon geometric configurations. Geometric forms include spirals, rings, loops, the shape of a 7 or T Lippes (1982) and Tatum (1982) reported that they are also classifed as inert devices or medicated carrying drugs as copper or progesterone. devices include Grafenberg ring closed Ota ring. Inert open or linear devices include Lippes While medicated devices and Saf-T-Coil. be either copper bearing devices as copper T, copper 7 and multiload devices, progesterone releasing devices such as progestasert devices and Norgestrel (experimental) or devices designed to inhibit bleeding and medicated with antifibrinolytic agents as trasylol or prostaglandin inhibitors as mefenamic acid and tolfenamic acid.

Lippes (1982) reported that closed devices are no longer used in western counteries.

# Complications and side effects of intrauterine device use:

As a method of contraception intrauterine devices have some side effects and complications.

Berthet and Racinet (1980) divided them into side effects and complication during insertion or after the insertion of the intrauterine device.

## (A) During the insertion:

Berthet and Racinet (1980) and Tatum (1982) reported that during insertion of the intrauterine device syncope or vasovagal reactions such as nausea and bradycardia may occur. They added that also immediate perforation may occur and it is usually transfundal and consist of intraperitoneal placement of the intrauterine device.

#### (B) After the insertion of the intrauterine device:

#### (1) Spotting and bleeding:

Hatcher et al (1984) reported that 15 per cent of women will have their intrauterine devices removed because of bleeding or spotting. They added that bleeding is often heavier for women with intrauterine devices. They reported that patients may experience more days of bleeding, persistant bleeding or spotting between periods. Lippes (1982) reported that if bleeding is more than 80 millitiers per cycle after the first two months after insertion, intrauterine device removal is recommended.

#### (2) Cramping and pain:

Hatcher et al (1984) reported that cramping and pain is a very common complication of intrauterine device use. It may be due to sounding the uterus during the process of insertion, partial expulsion of the intrauterine device, too large an intrauterine device, spontaneous abortion, ectopic pregnancy or pelvic inflammatory disease.

#### (3) Expulsion:

Tietze and Lewit (1970) reported that intrauterine device expulsion rate in most large studies ranges

from 5 to 20 per 100 women at one year. He added that expulsion declines with the age of the user, among multiparous women occur more frequent 4-8 weeks postpartum or insertion in the first 17 days after the menstrual period.

#### (4) Lost intrauterine device threads:

Hatcher et al (1984) reported that lost intrauterine strings may be due that the patient could not feel it, pregnancy, perforation or retraction of the threads.

#### (5) Difficult removal:

Hatcher et al (1984) reported that difficult removal may be due to the sharp angle of the copper,7 device which must be drawn through the internal cervical os or embedding of the intrauterine device in the endometrium after prolonged use.

#### (6) Pregnancy:

Hatcher et al (1984) reported that approximately one third of intrauterine device related pregnancies result from undetected partial or complete expulsion but pregnancy may occur even if the device is in utero.

Lippes (1982) reported that 50 per cent of cases will terminate in spontaneous abortion and that pregnancy which continue into the second trimester with an intrauterine device in utero may develop sepsis. They added that pregnancy is suspected when the patient misses a menses, has nausea or feels breast fullness.

#### (8) Ectopic pregnancy:

Hatcher et al (1984) reported that 5 per cent of pregnancies with intrauterine device in place are ectopic.

#### (9) Pelvic inflammatory disease:

Pelvic inflammatory disease in intrauterine device user will be discussed in details.

#### Intrauterine device alterations after insertion

Gupta (1982) reported that degenerative changes occur on the surface of both plain plastic and coppercald intrauterine devices. These changes are progressive increase with the increasing duration of intrauterine device in the uterine cavity. The surface intrauterine device of the instead of being glistening and becomes irreqular and cobblestoned with large irregular calcium, iron and protein compound deposits. Gupta (1982)added that non-refractile, coated plastic or metal fragments may occur as 50 um to 200 um flakes which are generally brown or brownish with dense centers. These fragments have an acute and chronic inflammatory response around Occasionaly a foreign body giant cell reaction with histiocytic proliferation may be observed.

Nilsson et al (1981) in their study of bacterial cultures from intrauterine devices removed from patients with suspected pelvic inflammatory disease, an association between positive cultures of beta haemolytic streptococci and Escherchia coli and pelvic inflammatory disease was found. Positive cultures of Neisseria gonorrhea were significantly correlated with pelvic inflammatory