ULTRASONIC INVESTIGATION OF POLYMER BLENDS

THESIS

SUBMITTED TO

THE FACULTY OF SCIENCE.

AIN SHAN S UNIVERSITY

FOR

THE PHD DEGREE IN PHYSICS

 \mathbf{BY}

Nadia Sayed Abd El-AAL

BSc. MSc.

National Institute for Standards

1992

Acknowledgement

The author should pay much gratitude and respect to Prof. Dr. A.H. Mousa, Head of Physics Dept., Faculty of Science, Ain Shams University, for his kind encouragement, and support during the progress of this work.

The author wishes to express her deep gratitude and thanks to prof. Dr. A.A. Mohamed, Emeritus Professor, Physics Dept. Faculty of Science, Ain Shams University, for his permanent supervision, constant advice, kind encouragement, and support during the progress of this work.

The author is also indebted to Prof. Dr. M.A. Sidkey, Head of Ultrasonic Laboratory. National Institute for Standards, for suggesting the problem, his keen valuable supervision, encouragement, and unlimited help.

The author has to express her thanks to Dr. A.M. Abd El Fattah, National Institute for Standards, for her great help and support.

The author is very thankful to Prof. Dr. A.A. Yahia, National Research Center, for his kind help in

samples preparation and fruitful discussions.

The author wishes also to express her sincere gratitude to all her colleagues at the Ultrasonic Laboratory of the N.I.S. for their kind help and facilities offered to her letting this work to be completed.

CONTENTS

	Page
CHAPTER I	
INTRODUCTION	1
Methods of Testing Compatibility	5
1. Viscosity Method	5
2. Heat of Mixing Method	6
3. Infrared Spectroscopy Method	6
4. Electron Microscopy	7
5. Glass Transition Methods	7
a. Dynamic Mechanical Method	7
b. Dielectric Relaxation Method	8
c. Differential Scanning	
Calcrimetry Method	8
6. Ultrasonic Velocity Method	8
7. Ultrasonic Attenuation Method	9
OBJECT AND AIM OF THE STUDIES COVERED	
BY THE THESIS	10
CHAPTER II	
REVIEW OF LITERATURE	
1. Ultrasonic Velocity Measurements	12
2 Witrasonic Absorption Measurements	19

3. Glass Transition Temperature	24
a. Differential Scanning Calorimetry (DSC).	27
b. Dynamic Mechanical Relaxation	29
1. Difference in glass transition	
temperatures of homopolymers	31
2. Magnitude dependence on	
concentration of components	31
3. Dependence on measuring technique	32
c. Ultrasonic attenuation technique	32
4. Heat of Mixing	34
5. Electron Microscope	39
6. Infrared Spectroscopy	47
CHAPTER III	
EXPERIMENTAL	
1. Ultrasonic velocity measurements	54
2. Ultrasonic attenuation measurements	55
3. Assembly for the apparatus used for	
measurement of ultrasonic velocity	58
4. Assembly for the apparatus used in	
measuring ultrasonic attenuation	61
5. Transition temperature measurements	63
6. Materials	65
Preparation of rubber blends	67

CHAPTER IV

RESULTS AND DISCUSSION 1. NR-BR Blend Systems 69 a. Ultrasonic compressional velocity in NR-BR blend solutions 69 b. Ultrasonic compressional velocity in NR-BR solid blend system 70 c. Ultrasonic attenuation in NR-BR rubber blend solution 70 d. Ultrasonic attenuation in NR-BR solid blend system 71 e. Ultrasonic transition temperature in NR-BR solid blend system 71 f. Heat of mixing of NR-BR blend 73 g. Adiabatic compressibility in NR-BR blend solutions 74 2. NR-SBR Blend System 75 a. Compressional ultrasonic velocity in NR-SBR rubber blend system 75 b. Compressional ultrasonic velocity in NR-SBR solid blend system 75 c. Ultrasonic attenuation in NR-SBR rubber blend solutions 76 i. Ultrasonic attenuation in NR-SBR solid blend system 76

e. Ultrasonic transition temperature	
in NR-SBR solid blend systems	77
f. Heat of mixing of NR-SBR blend	78
g. Adiabatic compressibility in	
NR-SBR blend solutions	79
3. SBR-BR Blend System	80
a. Compressional ultrasonic velocity	
in SBR-BR rubber blend solutions	80
b. Ultrascnic attenuation in SBR-BR	
rubber blend solutions	80
c. Heat of mixing of SBR-BR blend	81
d. Adiabatic compressibility in	
SBR-BR rubber blend solutions	81
4. SBR-NBR Blend System	82
a. Compressional ultrasonic velocity	82
b. Ultrasonic attenuation in SBR-NBR	
blend solutions	82
c. Heat of mixing of SBR-NBR blend	83
d. Adiabatic compressibility in	
SBR-NBR rubber blend solutions	84
5. NR-NBR Blend System	85
a. Compressional ultrasonic velocity	
in NR-NBR rubber blend solutions	85
b. Compressional ultrasonic velocity	
in NR-NBR solid blend systems	85

	c.	Ultrasonic attenuation in NR-NBR	
		rubber blend solution	86
	d.	Ultrasonic attenuation NR-NBR	
		solid blend system	86
	e .	Ultrasonic transition temperature	
		in NR-NBR solid blend system	87
	f.	Heat of mixing of NR-NBR blend	88
	g.	Adiabatic compressibility in	
		NR-NBR rubber blend solutions	88
6.	NR-E	PDM Blend System	89
	a.	Compressional ultrasonic velocity	
•		in NR-EPDM rubber blend solutions	89
	ъ.	Compressional ultrasonic velocity	89
		in NR-EPDM solid blend systems	
	С.	Ultrasonic attenuation in NR-EPDM	90
		rubber blend solutions	
	d.	Ultrasonic attenuation in NR-EPDM	
		solid blend systems	90
	е.	Ultrasonic transition temperature	
		in NR-EPDM solid blend systems	91
	f.	Adiabatic Compressibility in	
		NR-EPDM rubber blend solutions	92
7.	NR-I	IR Blend System	93
	a.	Compressional ultrasonic velocity	
		in NR-IIR rubber blend solutions	93

b. Ultrasonic attenuation in NR-IIR	
rubber blend solutions	93
c. Heat of mixing of NR-IIR blend	94
d. Adiabatic compressibility in	
NR-IIR rubber blend	94
ADDITIONAL EXPERIMENTS	95
1. Infrared spectroscopy	95
2. Electron microscopy	97
DISCUSSION	100
REFERENCES	109
ARABIC SUMMARY	

SUMMARY

_

Summary

All rubbers have shortcomings in one or more properties. The use of two or more different polymers to produce a polymer blend is becoming increasingly important for the preparation of materials with new desirable properties absent from the component polymer. Polymer blends are defined as a physical mixtures of structurally different polymers which interact through secondary forces.

Rubbers are often blended to obtain a lower cost material with better processing behaviour, intermediate between that of the components. These blends can be either homogeneous (compatible, or heterogeneous incompatible). Therefore, the compatibility is the fundamental property in polymer blends deciding their practical utility.

The scheme of the present study covers the following:

 Measurements of the compressional ultrasonic velocity in both blend solutions and solid polyblends using pulse echo technique.

- 3. Only one single transition temperature was observed for compatible blends indicating unambiguous evidence of miscibility, while two transition temperatures exist for incompatible blends indicating the existence of a multiphase structure.
- 4. Compatibility is either described as thermodynamic compatibility satisfying the equation,

where 4 3_m is the free energy change for mixing.

 \div H₂ is the heat of mixing.

 $\triangle S_{m}$ is the change in entropy.

that their blends are technologically useful. The calculation of heat of mixing for compatible blends using Schneier's equation gave values lower than 41.8x10⁻³. Coule, i.e. below the limit of compatibility and this agrees well with Schneier's calculations while for incompatible blends, the value of heat of mixing exceed the upper limit of compatibility.

6. The variation of adiabatic compressibility with composition is linear for compatible blends while it deviates from linearity for incompatible blends. 6. Additional experiments; scanning electron microscopy and infrared spectroscopy confirmed the results obtained from ultrasonic investigation and heat of mixing calculations.