PRODUCTION OF SOME FRUIT ROOTSTOCKS THROUGH TISSUE CULTURE TECHNIQUE

By LATIF FAHMY GUINDY

A Thesis Submitted in Partial Fulfillment

¢!

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science

(Fruit Crops)

Department of Horticuliure
Faculty of Agriculture
Ain Shams University

1990

APPROVAL SHEET

PRODUCTION OF SOME FRUIT ROOTSTOCKS THROUGH TISSUE CULTURE TECHNIQUE

Ву

Latif Fahmy Guindy

B.Sc. Agric. (Horticulture), Cairo University, 1967

M.Sc. Agric. (Horticulture), Tanta University, 1977

This Thesis for Ph.D. Degree has been Approved by:

Prof. Dr. G.R. Stino

Prof. of Pomology

Fac. Agric., Cairo Univ.

Prof. Dr. M. Abou-Rawash M. Noan Ramach

Prof. of Pomology

Fac. Agric., Ain Shams Univ.

Prof. Dr. S.E. Maximos

Prof. of Pomology

Fac. Agric., Ain Shams Univ.

Date of examination: /o/ / / 1990

PRODUCTION OF SOME FRUIT ROOTSTOCKS THROUGH TISSUE CULTURE TECHNIQUE

By

Latif Fahmy Guindy

B.Sc. Agric. (Horticulture), Cairo University, 1967 M.Sc. Agric. (Horticulture), Tanta University, 1977

Under the Supervision of: Prof. Dr. Shawky E. Maximos

Prof. of Pomology, Faculty of Agriculture, Ain Shams University

Prof. Dr. Alaa Z. Bondok

Prof. of Pomology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

This research work was undertaken during the years 1985 to 1987 to investigate the best procedure of tissue culture technique that can be adopted for producing some new promising citrus rootstocks namely: Volkamer lemon, Carrizo citrange, Swingle citrumelo and Cleopatra mandarin that resist tristeza virus disease. Some peach rootstocks namely: Okinawa, Nemaguard and P. davidiana that resist nematodes, were also investigated. The obtained results revealed varietal variations in response to different treatments due to the different genotype make up between cvs.

Preferable disinfestation procedures for obtaining alive aseptic cultures were reached. In addition, utmost multiplication rates per explant were obtained by applying the cytokinin BA alone (at 1.0-2.0 mg/l) or combined with the auxin IBA (at 0.02-0.2 mg/l) or coumarin (at 10 mg/l) or adenine sulfate (at 40 mg/l) added to Murashige &

Us

Skoog (MS) medium for citrus and peach cultures.

The best rooting values were obtained when NAA (at 0.1 - 1.0 mg/l) was applied to citrus and peach rooting media. Plantlets with the highest root number survived best. Average root length was also a limiting factor. The difficulty in rooting was associated with the presence of resins or sclereids in the plant's cortex cells that hindered the emergence of adventitious roots.

ACKNOWLEDGEMENT

This is to express my sincerest appreciation and deep gratitude to Prof. Dr. Shawky E. Maximos, Prof. of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University, his supervision, useful suggestions, constructive criticism, encouragement, time

Sincere appreciation is also due to Prof. Dr. Alaa Z. Bondok, Prof. of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University, for proposing of the problem, most understanding supervision, diligence, concrete suggestions, valuable advices, under whose constant guidance this investigation was carried out.

Many thanks are due to Dr. M.A. Salama, El-Fayoum Faculty of Agriculture, Cairo University, for his help in the histological study of this work.

I am indebted to Dr. H. El-Hennawy and Dr. S. El-Shazly, assistant professors of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University, for their sincere help.

Cordial thanks are also due to the ADSP, TC Lab. staff, for all the useful help presented throughout the work.

To the Horticultural Research Institute, especially Citrus Research Department, I dedicate my heartfelt thanks for support and help.

DEDICATION

I would like to dedicate this thesis to my Brother, my Wife and my Children who insistly have encouraged me to get this work done.

$\underline{C} \ \underline{O} \ \underline{N} \ \underline{T} \ \underline{E} \ \underline{N} \ \underline{T} \ \underline{S}$

				Page
į.	INTR	obuc:	TION	I
2.	REVIE	EW OF	LITERATURE	4
3.	МАТЕ	ERIALS	AND METHODS	27
ŭ.	RESU	LTS .		38
	1. S	urface-	-Sterilization	38
	â	. Cit	rus	38
	ć	. Pea	aches	38
	II. F	rollfer	ation	'- 6
	a	. Cit	rus	46
		1.	Effect of adding different cytokinins on	
			proliferation	46
		2.	Effect of combining adenine sulfate with	
			BA on proliferation	49
		3.	Effect of adding coumarin on proliferation	49
	Ŀ	. Pea	aches	49
		1.	Effect of adding cytokinin BA on proliferation	49
		2.	Effect of combining IBA with BA on prolifera-	
			tion	53
	III. F	Rooting	<u> </u>	53
	2	. Cit	rus	53
		1.	Effect of adding NAA	53
		2.	Root improvement trials by combining IBA	
			with NAA	59
	ŀ	Pe	aches	64
		1.	Okinawa peach	64
		2.	Nemaguard peach	66
		3.		69
	IV.	Histolo	gical Studies	73
	ä	a. Ci	trus	73
		1.	Anatomy of citrus rootstocks	73
		2.	Root development in citrus rootstocks	83
	į	b. Pe	aches	88

		Page
	1. Anatomy of peach rootstocks	88
	2. Root development in peach rootstocks	92
5.	DISCUSSION	96
6.	SUMMARY AND CONCLUSIONS	105
7.	REFERENCES	110
8.	ARABIC SUMMARY	

LIST OF TABLES

			Page
Table (1)	=	Formulation of basal medium of Murashige and skoog (MS-1962) for plant tissue and cell culture	31
Table (2)	:	Effect of various methods of surface-sterilization on asepsis of citrus rootstocks cultures	39
Table (3)	:	Effect of various methods of surface-sterilization on asepsis of peach rootstocks cultures.I. Effect of combining sodium hypochlorite with ethanol	42
Table (4)	:	Effect of various methods of surface-sterilization on asepsis of peach rootstocks cultures. II. Effect of adding mercuric chloride to sodium hypochlorite and ethanol combinations	<u> </u>
Table (5)	:	Effect of adding some plant growth substances to the culture media on average number of new shoots produced per explant of the four citrus rootstocks: (A) Effect of the two cytokinins: Benzyladenine (BA) and 2-isopentenyl-adenine (2iP)	47
		(B) Effect of addition of adenine sulfate (AS) to benzyladenine (BA)	÷7
Table (6)	:	Effect of adding some plant growth substances to the culture media on average number of new shoots produced per explant of the two citrus rootstocks: (A) Effect of adding coumarin (B) Effect of addition of coumarin to BA	51 51
Table (7)	:	Effect of adding BA to the culture media on average number of new shoots produced per explant of the three peach rootstocks	52
Table (8)	:	Effect of adding combinations of IBA and BA to the culture media on average number of new shoots produced per explant of the three peach rootstocks	54
Table (9)	:	Effect of adding NAA to the culture media on rooting and survival of the four citrus root-stock explants (7 weeks following treatment)	55
Table (10)	:	Effect of adding NAA and IBA to the culture media on rooting and survival of Cleopatra mandarin (CL) and Carrizo citrange (CA) rootstocks explants (7 weeks following treatment)	60

			Page
Table (11)	:	Effect of adding NAA or IBA to the culture media on rooting and survival of Okinawa peach rootstock explants (7 weeks following treatment)	65
Table (12)	:	Effect of adding NAA and IBA combinations to the culture media on rooting and survival of Okinawa peach rootstock explants (7 weeks following treatment)	67
Table (13)	:	Effect of adding NAA or IBA to the culture media on rooting and survival of Nemaguard peach rootstock explants (7 weeks following treatment)	68
Table (14)	:	Effect of adding NAA and IBA combinations to the culture media on rooting and survival of Nemaguard peach rootstock explants (7 weeks following treatment)	7C
Table (15)	:	Effect of adding NAA or IBA to the culture media on rooting and survival of Prunus davidiana peach rootstock explants (7 weeks following treatment)	71
Table (16)	:	Effect of adding NAA and IBA combinations to the culture media on rooting and survival of Prunus davidiana peach rootstocks explants (7 weeks following treatment)	72

- V -

LIST OF FIGURES

			Page
Fig. (1)	:	Effect of various methods of surface-sterilization on asepsis of citrus rootstocks cultures	40
Fig. (2)	:	Effect of various methods of surface-sterilization on asepsis of peach rootstocks cultures.I. Effect of combining sodium hypochlorite with ethanol	43
Fig. (3)	2	Effect of various methods of surface-sterilization on asepsis of peach rootstocks cultures II. Effect of adding mercuric chloride to sodium hypochlorite and ethanol combinations	45
Fig. (4)	:	Effect of adding the two cytokinins (BA, 2iP) to the culture media on average number of new shoots produced per explant of the four citrus rootstocks	48
Fig. (5)	:	Effect of addition of adenine sulfate (AS) to BA to the culture media on average number of new shoots produced per explant of the four citrus rootstocks	50
Fig. (6)	:	Effect of adding BA to the culture media on average number of new shoots produced per explant of the three peach rootstocks	52
Fig. (7)	:	Effect of adding combinations of IBA and BA to the culture media on average number of new shoots peroduced per explant of the three peach rootstocks	54
Fig. (8)	:	Effect of adding NAA to the culture media on rooting and survival of Cleopatra mandarin (CL), Volkamer lemon (VOL), Swingle citrumelo (SW) and Carrizo citrange (CA) rootstock explants (7 weeks following treatment)	56
Fig. (9)	:	Weekly root development of Valkamer lemon (VOL) and Swingle citrumelo (SW) rootstock explants as affected by application of NAA	58
Fig. (10)	:	Effect of adding NAA - IBA on rooting and survival of Cleopatra mandarin (CL) and Carrizo citrange (CA) rootstock explants (7 week following treatment)	۲.۱

		Page
Fig. (11) :	Weekly root development of Cleopatra mandarin rootstock explants as affected by application of auxins	62
Fig. (12):	Weekly root development of Carrizo citrange root- stock expaints as affected by application of auxins	63
Fig. (13):	Effect of adding auxins NAA and IBA to the culture media on rooting and survival of Okinawa, Nemaguard and P. davidiana peach rootstock explants (7 weeks following treatment)	74
Fig. (14) :	Effect of adding auxins NAA and IBA to the culture media on root number and root length of Okinawa, nemaguard and P. davidiana peach rootstock explants (7 weeks following treatment)	75
Fig. (15):	Weekly root development of Okinawa peach root- stock explants as affected by application of auxins	76
Fig. (16) :	Weekly root development of Nemaguard peach rootstock explants as affected by application of auxins	77
Fig. (17) :	Effect of adding NAA and IBA combinations to the culture media on rooting and survival of Okinawa, Nemaguard and P. davidiana peach rootstock explants (7 weeks following treatment)	78
Fig. (18) :	Effect of adding NAA and IBA combinations to the culture media on root number and root length of Okinawa, Nemaguard and P. davidiana peach rootstock explants (7 weeks following treatment)	79
Fig. (19) :	Weekly root development of Okinawa peach root- stock explants as affected by application of auxins	80
Fig. (20) :	Weekly root development of Nemaguard peach rootstock explants as affected by application of NAA and IBA combinations	81
Fig. (21) :	Weekly root development of P. <u>davidiana</u> peach rootstock expaiants as affected by applications of NAA, IBA alone or in combinations	82

1.3

		Page
Fig. (22):	(a . b) C.S. in rooted shoot of Volkamer lemon cv.	84
Fig. (23):	(c , d) C.S. in rooted shoot of Volkamer lemon cv.	85
Fig. (24) :	(a , b) C.S. in rooted shoot of Carrizo citrange	86
Fig. (25):	(c , d) C.S. in rooted shoot of Carrizo citrange	87
Fig. (26) :	C.S. in rooted shoot of Okinawa cv	89
Fig. (27) :	C.S. in rooted shoot of Nemaguard cv	90
Fig. (28) :	C.S. in rooted shoot of P. davidiana sp	91
Fig. (29) :	(a, b) C.S. in rooted shoot of Okinawa cv	93
Fig. (30) :	(c) C.S. in rooted shoot of Okinawa cv	94
Fig. (31):	(a , b) C.S. in rooted shoot of Okinawa cv	95

INTRODUCTION

.

One of the keys to the profitable production of horticultural crops is an efficient propagation system. Many recent developments have taken place by adopting the most advanced techniques. One of these techniques to be used is plant tissue culture.

The term "tissue culture" encompasses a wide range of techniques and culture systems including in vitro culture of protoplasts, cells, tissues, organs (meristems, shoot tips, root tips, anthers, etc.), ovules and embryos. These techniques are of use to nurserymen and plant propagators to achieve one or more of the following objectives:

- 1. Rapid clonal multiplication of valuable specimens for testing and eventual commercial production.
- 2. Vegetative propagation of difficult-to-propagate species.
- 3. Elimination of viruses from infected stocks.
- 4. Detection of early incompatibilities through in vitro micrografting which only appear in the orchard after several years.

Total area planted with citrus in Egypt is about 276,000 feddans in 1988 that represents about 42.8 % of the total area of fruit trees, buddet on sour orange the most common rootstock. The spread of tristeza (quick decline disease) lately in the Mediterranean region was the impetus for replacement new rootstocks for the standard sour orange which is susceptible to the disease. In addition, the advantages of such rootstocks extend to involve control of fruit quality, tolerance to unfavourable soil factors such as salinity, Phytophthora