ROLE OF SHIFT WORK ON SUPRA-RENAL CORTICAL FUNCTION AND RESERVE IN BAKERS BY SYNACTHEN STIMULATION

THESIS

SUBMITTED IN PARTIAL FULFILLMENT
FOR MASTER DEGREE IN
Public Health and Preventive Medicine

BY

Yasser Abd-El Aziz El-Sedfy
M.B., B.Ch.

SUPERVISORS

Professor Dr.
RIFKY FARIS

Prof. and Chairman of Department of Community. Environmental and Occupational Medicine,
Ain Shams University

Major general (med.)

ALI RASHED

Military Medical Academy

Major General (med)

The Control of the Control

NABIL EBEID

Chairman of Occupational
Medicine. Department
Military Medical Academy

Brigadier (med.)

MOHAMED SALAH MORTAGY

Chairman of Chemical Pathology

Department, Maadi Military Hospital

AIN SHAMS UNIVERSITY

1988

TO

.**i**.

MY

WIFE

AND

SON

CONTENTS

		Page
*	Introduction.	1
٠.	Review of Literature.	3
	l. Shift work	3
	. Effects of shift work on health.	E /
	- Fatigue and Stress.	4
	- Sleep.	б
	- Body system disorders.	7
	. Effects of shift work on safety and performance.	8
	. Effects of shift work on family and social life.	9
	2. Bakeries.	11
	3. Suprarenal cortical function.	14
	1. Adrenocorticotrophic hormone (ACTH)	14
	2. Control of ACTH secretion by the hypothalamu	ıs 14
	corticotropin releasing factor (CRF).	
	3. Mechanism by which ACTH activates adreno -	15
	cortical cells to produce steroids.	
	4. Feed back inhibition of ACTH release.	15
	5. Effect of physiological stress on ACTH and	15
	cortisol secretion.	
	6. The control system : regulation of cortisol	18
	secretion.	
	7. Circadian (diurnal) rhythm of cortisol	18
	secretion.	
	8. Laboratory evaluation of adrenocortical	22
	Function	

		Pag
9.	Tests of glucocorticoid reserve.	23
10.	Cortisol metabolism.	24
*	Subjects and methods.	26
	- Bread making.	
	- Subjects of the study.	
	- Laboratory tests.	
*	Results.	32
*	Discussion.	50
*	Conclusions and recommendations.	58
*	Summary.	60
*	References.	64
*	Arabic Summary.	ワラ

TIL

g a de Linea a samile de de la linea de la

LIST OF TABLES

- Table (1):.Results of estimation of ACTH and cortisol at 10.00 P.M.
- Table (2) :. Results of estimation of ACTH and cortisol
 .Bakers after day shift, at 10.00 F.M.
- Table (3) :.Results of estimation of ACTH and cortisol at 10.00 $A_{\bullet}M_{\bullet}$
- Table (4):.Results of estimation of ACTH and cortisol
 .Bakers after night shift, at 10.00 A.M.
- Table (5):.Comparison between mean values of ACTH of control group at 10.00 A.M. and at 10.00 P.M.

- Table (8): .Comparison between night shift and day shift bakers.
 .Mean values of ACTH at 10.00 A.M. and 10.00 P.M.
- Table (9) :. Comparison between mean values of control group at 10.00 A.M. and at 10.00 P.M.

-11

بين مخدده ا زيران المحدد الإن الساوية الساوية

- Table (10): . Comparison between day shift bakers and control group.
 - . Mean values of cortisol at 10.00, 10.30 and 11 P.M.
- Table (11): . Comparison between night shift bakers and control group.
 - . Mean values of cortisol at 10.00, 10.30 and 11.00 A.M.
- Table (12): . Comparison between night shift and day shift bakers.
 - . Mean values of cortisol at 10.00 A.M. and 10.00 P.M.

LIST OF FIGURES

- Fig. (1): . Mechanism for regulation of slucocorticoid secretion .
- Fig. (2): . A typical pattern of cortisol secretion during the 24 hour day.
- Fig. (3): . Comparison between bakers and control groups as regards ACTH.
- Fig. (4): . Comparison between control groups at 10.00 P.M and 10.00A.M as regards cortisol.
- Fig. (5): . Comparison between bakers and control group at 10.00 P.M. as regards cortisol.
- Fig. (6): . Comparison between bakers and control group at 10.00 A.M. as regards cortisol.
- Fig. (7): . Comparison between bakers at 10.00 P.M and 10.00 A.M. as regards cortisol.

Acknowledgement.

-11

ACKNOWLEDGEMENTS

I wish to record my very sincere gratitude to Professor Dr. RIFKY FARIS, Professor and Chairman of Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University for his unlimited help, valuable advice and kind encouragement. His ideas were very useful and fruitful in accomplishing this work.

I wish to express my appreciation and deep gratitude to Professor Major General (Med.) NABIL EBEID ,
Professor of Preventive and Occupational Medicine in the
Military Medical Academy, for his kind help and supervision in every step in this work. I feel thankful to his most helpful guidance, Co-operation and valuable suggestion.

My deepest thanks and gratitude to Brig. (Med)

SALAH MORTAGY, Chairman of Chemical pathology Department,

Maady Military Hospital, for his utmost co-operation,

his faithful help and for his continuous encouragement.

My deepest thanks to Major General (Med.) ALI RASHED Military Medical Academy, for his kind encouragement and co-operation.

VII

My deepest thanks to Dr. MOHSEN ABD EL HAMID ,
Assistant Professor, Department of Community, Environmental
and Occupational Medicine, Ain Shams University, for his
co-operation in preparing the statistical results.

I am deeply indebted to the genuine assistance of ne director of CIBA-GEIGY scientific office CAIRO,

. HASSANEIN REFAAT and to Dr. NAGY SALAMA, I am very rateful for providing me with the SYNACTHEN ampoules, ne of the fine products of CIBA-GEIGY and the main tool this research.

INTRODUCTION

INTRODUCTION

It is well known that in man adrenal . cortisol is regulated by the hypothalamic - pituitary - adrenal axes. This system allows for basal and circadian steroid production, regulation of plasma steroid levels in normal circumstances and increased or decreased steroid production in response to a number of several stimuli.

Some authors have found an impairment in adrenal cortical function. This impairment has been elicited by poor response to synthetic ACTH stimulation and by low plasma cortisol measures as compared with healthy control subjects.

Response of ACTH stimulation has not been studied in relation to occupations and work - related conditions, though it has been thoroughly investigated in a diversity of diseases.

Shift work is one of the problems of modern industrialization. Its impact on industrial workers is both social and medical. It has been aimed in this work to study the role of shifts on suprarenal function and reserve in bakers. Bakery has been chosen as a vital industry in

. . .

which workers are subject to shifts for most of their lives. In addition they work in very adverse conditions, stress, environmental pollution, changes of temperature, irregular meals and exposure to flour particles and contaminata.

Estimation of suprarenal cortical function and reserve has been estimated in this work by measuring both ACTH and cortisol levels both basal and after stimulation by Synacthen Ciba (${\tt B}^{1-24}-$ corticotrophin = tetracosactid).