EFFECT OF LIGHT ON SOME PHYSIOLOGICAL AND IMMUNOLOGICAL CHARACTERISTICS IN JAPANESE QUAIL

ВУ

MAGDA ABDEL-ALL ABD-ALLA

Thesis submitted in partial fulfillment

of.

the requirements for the degree of

MASTER OF SCIENCE

636.5 142 in
Poultry Physiology

Department of Animal Production Faculty of Agriculture Ain Shams University

,1990

APPROVAL SHEET

EFFECT OF LIGHT ON SOME PHYSIOLOGICAL AND IMMUNOLOGICAL CHARACTERISTICS IN JAPANESE QUAIL

BY

MAGDA ABDEL-ALL ABD-ALLA

B. Sc. of Agric. Sci. Poultry Production,
Ain Shams Univ., 1981

This thesis for M.Sc. degree has been Approved by:

Prof. Dr. Maie Fouad Mahmmoud (Maie F.M. Ali.)

Prof. of Poultry Physiology, Ain Shams Univ.,

Prof. Dr. Hatem Youssef Fl-Hammady (Element Prof. of Poultry Physiology, AssuitUniv.,

Dr. Fadia Mahmmoud Nosselr (Madia Nossella Prof. of Poultry Physiology, Anim.

Prod. Research Institute.

Date of examination 21/11/190	te of examination	21/11/1490	
-------------------------------	-------------------	------------	--

EFFECT OF LIGHT ON SOME PHYSIOLOGICAL AND IMMUNOLOGICAL CHARACTERISTICS IN JAPANESE QUAIL

BY

MAGDA ABDEL-ALL ABD-ALLA

B. Sc. of Agric. Sci. Poultry Production,
Ain Shams Univ., 1981

Under the Supervision of:

Prof. Dr. M.F.M. Ali (......)

Professor of Poultry Physiology

Prof. Dr. A.A.M. Bakeir (.....)

Professor of Poultry Physiology

ABSTRACT

Two experiments were carried out using one-day old male Japanese quail.

The first experiment, was conducted to investigate the effect of continuous and intermittent light on some physiological and immunological characteristics of male Japanese quail. One-day old chicks were maintained under the lighting programs of 2(9L:3D), 2(5L:7D), 2(7L:5D) and 14L:10D, (as a control group), till six weeks of age. Chicks were fed ad. Libitum a turkey starter ration. Body weight, feed consumption, feed efficiency and weight gain were recorded at weekly intervals. Thymus, bursa, spleen, testes and adrenal glands were excised at autopsy and weighed. Corticosterone and testosterone were assayed in the plasma samples. Body weights were consistently higher for males raised under all different lighting programs at all ages than that of the control. The

highest averages body weight gain and feed efficiency (129.8 ± 6.69 and 1.37 ± 0.09) were noted for males kept under 2(5L:7D). While the highest average feed consumption were reported for males kept under 2(9L:3D) program. The relative weights of testes, adrenal and spleen increased as the birds grew older. While the relative weights of bursa and thymus decreased. An opposite trend was noted for the relative weights of bursa and thymus glands. The lighting programs had no effect on the weights of all glands under study as well as the plasma testosterone level but resulted in an increase in the plasma corticosterone level.

The second experiment, were conducted to investigate the effect of dipping fertile Japanese quail eggs in testosterone propionate solution on the weights of bursa, thymus and spleen glands of hatched chicks. The experimental period lasted for six weeks after hatching. No significant differences were found in the relative bursa, thymus and spleen weights between different ages, sex and dipping times. The hormonal treatment of the egg resulted in an increase in the thymus weight but no effect on either bursa or spleen weights.

ACKNOWLEDGEMENTS

THANKS GOD.

I wish to express my sincere gratitude and deep appreciation to Dr. Maie Fouad Ali, Professor of Avian Physiology, Faculty of Agriculture, Ain Shams University for suggesting the problem, continuous help, her guidance, during the preparation of this manuscript.

My sincere appreciation and deep gratitude are extended to Dr. Ali Abdel Moomen Bakeir, Professor of Poultry Physiology, Animal Production Research Institute for his encouragement, and reading this manuscript.

Thanks are also due to Dr. M.Y. Mekkawy, Assistant Professor of Animal physiology, Faculty of Agriculture, Al-Azhar University, for his continuous help and valuable guidance during the determination of hormones.

Kind acknowledgement is also due to Dr. Abdel Halim A. Ashmawy, Assistant Professor of Animal Breeding, Ain Shams University, for his valuable suggestions in the statistical analysis of the data.

Special thanks are due to Mr. Abdel Mageed Mekhimar Abdel Maksoud, assistant lecturer of Avian physiology, Faculty of Agriculture, Ain Shams University, for his continued assistance throughout this study.

Thanks are due to Dr. M.M. Mashaly, associate professor of poultry Endocrinology and Immunology, Department of poultry science, Faculty of Agriculture, Pennsylvania State University for his greatest help and support.

Deepest gratitude is due to Miss Manal Mohammad Ahmed sayed, assistant lecturer of Animal Breeding Ain Shams University for her greatest help in the statistical analysis.

Finally, I am sincerely grateful to my beloved mother, sisters and brothers for their encouragement and support, which made all this possible.

LIST OF CONTENTS

	Pag
INTRODUCTION	
REVIEW OF LITERATURE	
Effect of intermittent light on:	3
Body weight and weight gain	3
Feed consumption and feed efficiency	
Mortality	13
Testis weight	
Adrenal weight	19
Thymus weight	19
Spleen weight	20
Plasma testosterone level	
Effect of intermittent light on corticosterone level .	20
Body weight in bursectomized chicks	22
Bursa weight in bursectomized chicks	24
Spleen weight in bursectomized chicks	26
Thymus weight in bursectomized chicks	29
MATERIALS AND METHODS	30
RESULTS	31
Effect of light on:	41
Body weight of male Japanese quail	
Gain in weight food governments	41
Gain in weight, feed comsumption and feed efficiency.	41
Mortality rate of male Japanese quail brooded and	
reared under different lighting programs	45
Effect of light on :	
Testes weight	4 5

	Pag	
Adrenal weight	50	
Bursa weight	50	
Thymus weight	54	
Spleen weight	57	
Plasma testosterone level	59	
Plasma corticosterone level	63	
Bursa of Fabricius and its relation to:		
Testes	66	
Adrenal	66	
Spleen	69	
Thymus and its relation to:		
Testes	69	
Adrenal	71	
Spleen	74	
Testes and its relation to adrenal	74	
Effect of testosterone hormone on :		
Thymus weight	78	
Bursa of bursa of Fabricius	81	
Spleen weight	83	
DISCUSSION	86	
SUMMARY	103	
REFERENCES	106	
APPENDIX TABLES	114	
ARARTC SHMMADY		

LIST OF TABLES

Table Page
1. Composition of ration
2. Average body weight (g) of chicks brooded and reared
under continuous and different intermittent lighting
programs 42
3. Analysis of variance for the effect of continuous
and intermittent lighting programs on body weight
of male chicks from one through six weeks of age 114
4. Body weight gain, feed consumption and feed efficie-
ncy of male chicks brooded and reared under continu-
ous intermittent lighting programs at six weeks of
age 44
5. Analysis of variance for the effect of continuous
and intermittent lighting programs on gain weight
at six weeks of age 115
6. Analysis of variance for the effect of continuous
and intermittent lighting programs on feed consu-
mption at six weeks of age
7. Analysis of variance for the effect of continuous
and intermittent lighting programs on feed effic-
iency at six weeks of age
8. Mortality rate of male Japanese quail brooded and
reared under continuous different intermittent
lighting programs

Tal	ble	Page
9.	. Average weight of the testes glands (g) of male	
	chicks brooded and reared under continuous and	
	different intermittent lighting programs at two,	
	four and six weeks of age	53
10.	. Analysis of variance for the effect of continuous	
	and different intermittent lighting programs on	
	testes	116
11.	Average weight of the adrenal gland (g) of male	
	chicks brooded and reared under different inter-	
	mittent lighting programs at two, four, and six	
	weeks of age	53
12.	Analysis of variance for the effect of continuous	
	and intermittent lighting programs on adrenal the	
	gland	116
13.	Average weight of the bursa of Fabricius gland (g)	
	of male chicks brooded and reared under continuous	
	and intermittent lighting programs at two, four and	
	six weeks of age	56
14.	Analysis of variance of the effect of continuous	
	and intermittent lighting programs on the bursa	
	of Fabricius gland	117
15.	Average weight of the thymus gland (g) of male	
	chicks brooded and reared under continuous and	
	intermittent lighting programs at two, four and	
	six weeks of age	= -

Tak	ble	Page
16.	. Analysis of variance for the effect of continuous	_
	and intermittent lighting programs on the thymus	
	gland	117
17.	Average weight of the spleen (g) of male chicks	
	brooded and reared under continuous and interm-	
	ittent lighting programs at two, four and six	
	weeks of age	61
18.	Analysis of variance for the effect of continuous	
	and intermittent lighting programs on the spleen	
	gland	118
19.	Testosterone level in plasma (ng/ml) of male	
	chichs brooded and reared under continuous	
	intermittent lighting programs at two, four	
	and six weeks of age	61
20.	Analysis of variance for the effect of continuous	
	and intermittent lighting programs on spleen glands .	118
21.	Corticosterone level (ng/ml) in plasma of male	
	chichs brooded and reared under continuous	
	intermittent lighting programs at two, four	
	and six weeks of age	64
	Analysis of variance for the effect of continuous	
	and intermittent lighting programs on plasma cor-	
	ticosterone level	19
	Average relative weight of the thymus gland (g) of	
	chicks quail hatched from eggs treated with male	
ŀ	hormone	

Table	Page
24. Analysis of variance for the effect of male hormone	-
on the weight of thymus gland	. 119
25. Average bursa weight (g) of chicks hatched from	
eggs treated with male hormone	79
26. Analysis of variance for the effect of male	
hormone on chicks bursa weight	120
27. Average spleen weight (g) of chicks hatched from	
eggs treated with male hormone	84
28. Analysis of variance for the effect of male	
hormone on spleen weight	120

LIST OF FIGURES

119u14	Page
1. Effect of different lighting programs on body	
weight of male Japanese quail at differnt ages	43
2. Effect of different lighting programs on weight	
gain of male Japanese quail at different ages	46
3. Effect of different lighting programs on feed cons-	
umption of male Japanese quail at differnt ages	47
4. Effect of different lighting programs on feed effi-	
ciency of male Japanese quail at differnt ages	48
5. Effect of different lighting programs on relative	
weight of testes of male Japanese quail at diffe-	
rent ages	51
6. Effect of different lighting programs on relative	
weight of adrenal of male Japanese quail at diff-	
erent ages	52
7. Effect of different lighting programs on relative	
weight of bursa of male Japanese quail at differ-	
ent ages	55
8. Effect of different lighting programs on relative	
weight of thymus of male Japanese quail at diffe-	
rent ages	58
9. Effect of different lighting programs on relative	
weight of spleen of male Japanese quail at diffe-	
rent ages	60
10. Effect of differnt lighting programs on plasma test-	
osterone level of male quail at differnt ages	62

Fig	rure	Page
11.	Effect of differnt lighting programs on plasma cort-	
	icosterone level of male quail at differnt ages	65
12.	Relationship between relative weight of bursa and	
	testes glands of male Japanese quail at two, four	
	and six weeks of age	67
13.	Relationship between relative weight of bursa and	
	adrenal glands of male Japanese quail at two ,four	
	and six weeks of age	68
14.	Relationship between relative weight of bursa and	
	spleen glands of male Japanese quail at two, four	
	and six weeks of age	70
15.	Relationship between relative weight of thymus and	
	testes glands of male Japanese quail at two, four	
	and six weeks of age	72
16.	Relationship between relative weight of thymus and	
	adrenal glands of male Japanese quail at two, four	
	and six weeks of age	73
17.	Relationship between relative weight of thymus and	
	spleen glands of male Japanese quail at two, four	
	and six weeks of age	75
18.	Relationship between relative weight of testes and	
	adrenal glands of male Japanese quail at two, four	
	and six weeks of age	76
19.	Effect of testosterone propionate on relative	
	weight of thymus gland of Japanese quail at	
	differnt ages	90