

FACULTY OF ENGINEERING

Electrical Power and Machines Engineering

The Effect of High Voltage Transmission Lines on Nearby (Gas-Oil) Pipelines & Methods of Mitigation

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electrical Power and Machines Engineering)

by

Ahmed Adel Al Saied Mohamed Aboul Khair

Bachelor of Science in Electrical Engineering

(Electrical Power and Machines Engineering)

Faculty of Engineering, Ain Shams University, 2007

Supervised By

Prof. Dr. Hanafy Mahmoud Ismail

Prof. Dr. Salem Mahmoud Elkhodary

Associate Prof. Dr. Sabry Mosa Mohamed

Cairo - (2015)

FACULTY OF ENGINEERING

Electrical Power and Machines

The Effect of High Voltage Transmission Lines on Nearby (Gas-Oil) Pipelines & Methods of Mitigation

by

Ahmed Adel Al Saied Mohamed Aboul Khair
Bachelor of Science in Electrical Engineering
(Electrical Power and Machines Engineering)
Faculty of Engineering, Ain Shams University, 2007

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Soliman El Debeiky Electrical Power and Machines, Ain Shams University	
Prof. Dr. Ahdab M.K. Elmorshedy Electrical Power and Machines, Cairo University	••••••
Prof. Dr. Hanafy Mahmoud Ismail Electrical Power and Machines, Ain Shams University	
Prof. Dr. Salem Mahmoud Elkhodary Electrical Power and Machines, Ain Shams University	

Date: /2015

FACULTY OF ENGINEERING

Electrical Power and Machines

The Effect of High Voltage Transmission Lines on Nearby (Gas-Oil) Pipelines & Methods of Mitigation

by

Ahmed Adel Al Saied Mohamed Aboul Khair Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering)

Faculty of Engineering, Ain Shams University, 2007

Supervisors Committee

Name and Affiliation	Signature
Prof. Dr. Hanafy Mahmoud Ismail Electrical Power and Machines, Ain Shams University	
Prof. Dr. Salem Mahmoud Elkhodary Electrical Power and Machines, Ain ShamsUniversity	
Associate Prof. Dr. Sabry Mosa Mohamed Electrical Power and Machines, Helwan University	

Date: /2015

STATEMENT

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Name: Ahmed Adel A	Al Saied	Aboul k	haiı
Signature:		• • • • • • • • • • • • • • • • • • • •	
Date:	/	/ 2015	

RESEARCHER DATA

Name : Ahmed Adel Al Saied Mohamed Aboul Khair

Date of birth : 26/9/1984

Place of birth : Cairo

Last academic degree : Bachelor of Science in Electrical Engineering

Field of specialization : Electrical Power and Machines Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2007

Current job : Senior Engineer at the Egyptian Natural Gas

Company (GASCO)

ACKNOWLEDGEMENT

I am very grateful to Professor Dr. Hanafy Ismail and Professor Dr. Salem El Khodary for their kind supervision, continuous advice and helpful guidance.

I would also like to express my deep gratitude to Associate Professor Dr. Sabry Mosa for every good help in all the thesis stages ,un gainful discussions and fruitful suggestions.

My deep appreciation, gratitude and thanks to my father for all what he did for me and my (mother, brother, sister, wife, brother's wife, Mariem & Yhia) and for the morals he have learned us.

Ahmed Adel Aboul Khair

Cairo, 2015

ABSTRACT

Electromagnetic fields produced by high voltage overhead transmission lines are still considered an important subject in several research areas due to their harmful effects on human health and environment. These Electromagnetic fields produces high level of induced voltages at nearly steel pipelines. This problem appeared obviously at the Natural Gas Transmission Network at the last 10 years where the pipelines share the same routes with high voltage transmission lines. The induced voltages at Gerga / Aswan pipeline and Taba / sharm pipeline reached to very dangerous levels and some technicians have been strongly shocked and exposed to death. Environmental Impact Assessment studies (EIA) are very important to be carried out before establishing of power line projects to evaluate the electromagnetic effects on the project environment especially on nearby pipelines as well as its social and health impacts. This thesis presents a comprehensive study to the induced voltages along a section of Taba / sharm Gas pipeline, 500 mm² cross section area and 208 km length which lies in the same right of way with an actual sophisticated overhead transmission line tower carrying four circuits (two 220 kV circuits and two 66 kV circuits) under different loading conditions. Three different mitigation methods were applied along the pipeline under normal and abnormal conditions (balanced, severe unbalanced loading and during different short circuit conditions). Mitigation techniques using cancellation wire, gradient control wires and using polarization cells were investigated. Results obtained showed that polarization cells give more efficient values for reduction of induced voltages using the suggested technique. A model was developed using the Alternative Transients Program (ATP) to simulate the whole system with the different mitigation methods. The effect of transmission lines maintenance scenarios on the induced voltage levels on the gas pipeline was also investigated. An economic impact assessment technique was developed to determine the appropriate and economic method.

LIST OF CONTENTS

ACI	KNOWLEDGMENT	
LIS	Γ OF CONTENTS	
LIS	Γ OF FIGURES	
LIS	Γ OF TABLES	
LIS	Γ OF SYMBOLS AND ABBREVIATIONS	
ABS	STRACT	
CH	APTER ONE: INTRODUCTION	
1.1	GENERAL	1
1.2	MECHANISMMS OF PIPELINES INDUCED VOLTAGE	3
1.3	HAZARDS FROM INDUCED VOLTAGES ON PIPELINES	9
1.4	THESIS REVIEW	12
СН	APTER TWO: REVIEW OF PREVIOUS WORK	
2.1	INTRODUCTION	14
2.2	CALCULATION METHODS	14
2.3	SOFTWARE PACKAGES	19
2.4	VARIOUS PUBLICATIONS AT THIS FIELD	24
CH	APTER THREE: INDUCED VOLTAGES MITIGATION	
TE	CHNIQUES AND CATHODIC PROTECTION SYSTEM	
		•
3.1	GENERAL	30
	CATHODIC PROTECTION SYSTEMS	30
3.3	METHODS OF MITIGATION DEPEND ON REDUCING THE INDUCED	31
3.4	VOLTAGE LEVELS ON THE PIPELINES METHODS DEPEND ON LIMITING THE EFFECT OF THE INDUCED VOLTAGES ON THE WORKING PERSONS	35
	VOLTAGES ON THE WORKING PERSONS	

СН	APTER FOUR:	CASE STUDY SIMULATION PROGRAM	1
4.1	INTRODUCTION		37
4.2	ATP DRAW PROGREPRESENTATION	RAM AND TRANSMISSION LINES-PIPELINE	37
4.3	TRANSMISSION LI	NE DATA PAGE SETTINGS	40
4.4	MODEL IMPLEMEN	NTATION	42
		RESULTS AND COMPARISON ENT MITIGATION TECHNIQUES	
5.1	INTRODUCTION		47
5.2	PIPELINE AND TRA	ANSMISSION LINES DESCRIPTION	47
5.3	PIPELINE AND TRA	ANSMISSION LINES ROUTE	53
5.4	SIMULATION RESU	JLTS	63
5.5	ECONOMIC STUDY	FOR DIFFERENT MITIGATION METHODS	162
_	·= ·	CONCLUSIONS AND NS FOR FUTURE WORK	
6.1	CONCLUSIONS		164
6.2	RECOMMENDATION	ONS FOR FUTURE WORK	166

REFERENCES

List of Tables

CHAPTER FOUR:	Case Study Simulation Program	
Table (4.1) System types a	nd equivalent models	40
CHAPTER FIVE:	Results & Comparison between Different Mitigation Techniques	
Table (5.1) Transmission l	ine capacity	50
Table (5.2) Transmission l	ine parameters per ohm/km	50
Table (5.3) Transmission l	ine positive, zero sequence parameters	51
Table (5.4) Pipeline and Tr	ransmission line LCC sections	63
Table (5.5) Induced voltag Loading - UnTransposed T	e values at the Pipeline Without Mitigation - Balanced Cransmission Lines	69
, ,	e values at the Pipeline Without Mitigation – Light Transposed Transmission Lines	72
-	e values at the Pipeline Without Mitigation –Heavy Transposed Transmission Lines	74
, ,	e values at the Pipeline Without Mitigation –Light asposed Transmission Lines	76
, ,	e values at the Pipeline Without Mitigation –Light asposed Transmission Lines –reversed direction	79
,	ge values at the Pipeline Without Mitigation –Heavy asposed Transmission Lines	81
	ge values at the Pipeline Without Mitigation L-G short Fransposed Transmission Lines	84
	ge values at the Pipeline Without Mitigation L-G short ransposed Transmission Lines	86
	ge values at the Pipeline Without Mitigation L-L short Transposed Transmission Lines	89
Table (5.14) Induced volta	ge values at the Pipeline case1 four circuits in service	91

LIST OF TABLES

Table (5.15) Induced voltage values at the Pipeline case 2	94
(2 * 220 kV circuits in service & 1 *66 kV circuit in service)	
Table (5.16) Induced voltage values at the Pipeline case 3	96
(2 * 220 kV circuits in service & 2 *66 kV circuit out of service)	
Table (5.17) Induced voltage values at the Pipeline case 4	99
(1 * 220 kV circuits in service & 2 *66 kV circuit in service)	
Table (5.18) Induced voltage values at the Pipeline case 5	101
(1 * 220 kV circuits in service & 1 *66 kV circuit in service)	
Table (5.19) Induced voltage values at the Pipeline case 6	104
(1 * 220 kV circuits in service & 2 *66 kV circuit out of service)	
Table (5.20) Transmission lines Maintenance scenarios results	106
Table (5.21) Induced voltage values at the Pipeline using Cancelation wires	110
mitigation systems – light unbalanced loading on 220 kV circuit	110
Table (5.22) Induced voltage values at the Pipeline using Cancelation wires	113
mitigation systems –Heavy unbalanced loading on 220 kV circuit	113
	116
Table (5.23) Induced voltage values at the Pipeline using Cancelation wires	116
mitigation systems, L-G fault at 220 kV circuit	118
Table (5.24) Induced voltage values at the Pipeline using Cancelation wires mitigation systems, L-G fault at 66 kV circuit	110
	101
Table (5.25) Induced voltage values at the Pipeline using Cancelation wires	121
mitigation systems, L-L fault at 220 kV circuit	126
Table (5.26) Induced voltage values at the Pipeline using Polarization cells	120
mitigation systems, Steady state light unbalance loading on 220 kV circuit	120
Table (5.27) Induced voltage values at the Pipeline using Polarization cells	128
mitigation systems, Steady state Heavy unbalance loading on 220 kV circuit	101
Table (5.28) Induced voltage values at the Pipeline using Polarization cells	131
mitigation systems, L-G fault at 220 kV circuit	
Table (5.29) Induced voltage values at the Pipeline using Polarization cells	134
mitigation systems, L-G fault at 66 kV circuit	
Table (5.30) Induced voltage values at the Pipeline using Polarization cells	137
mitigation systems, L-L fault at 220 kV circuit	
Table (5.31) Induced voltage values at the Pipeline using gradient control wires	142
mitigation systems, steady state light unbalance on 220 kV circuit	

LIST OF TABLES

Table (5.32) Induced voltage values at the Pipeline using gradient control wires	144
mitigation systems, steady state Heavy unbalance on 220 kV circuit	
Table (5.33) Induced voltage values at the Pipeline using gradient control wires	147
mitigation systems, L-G fault on 220 kV circuit	
Table (5.34) Induced voltage values at the Pipeline using gradient control wires	150
mitigation systems, L-G fault on 66 kV circuit	
Table (5.35) Induced voltage values at the Pipeline using gradient control wires	153
mitigation systems, L-L fault on 220 kV circuit	
Table (5.36) Induced voltage values at the Pipeline due to 220 kV circuits	157
Table (5.37) Induced voltage values at the Pipeline due to one 220 kV circuit	159

List of Figures

CHAPTER ONE: II	NTRODUCTION	
Fig. (1.1) Magnetic field & pipeline body		3
Fig. (1.2) Magnetic field resultant component		4
Fig. (1.3) Factors affecting ind	uced voltage levels	6
Fig. (1.4) Conductive coupling	during line to ground fault	7
CHAPTER THREE: A	A.C MITIGATION TECHNIQUES AND	
	CATHODIC PROTECTION SYSTEM	
Fig. (3.1) Sacrificial anode cat	hodic protection system	30
Fig. (3.2) Impressed current ca	Fig. (3.2) Impressed current cathodic protection current flow	
Fig (3.3) Zinc ribbon installation for AC mitigation – grounding		32
Fig. (3.4) Typical Gradient Co	ntrol Wire Installation: Plan View	33
CHAPTER FOUR: 0	CASE STUDY SIMULATION PROGRAM	
Fig. (4.1) LCC component from	m ATP Draw program	38
Fig. (4.2) Line cable constants data window		39
Fig. (4.3) LCC conductor dimentions data window		41
Fig. (4.4) AC voltage source representation		42
· · · · · · · · · · · · · · · · · · ·	RESULTS AND COMPARISON T MITIGATION TECHNIQUES	
Fig. (5.1) Gas pipeline route at	_	47
Fig. (5.2) schematic diagram to	o the system	48
Fig. (5.3) 220 - 66 kV power li	ine tower dimensions	51
Fig. (5.4) Transmission towers	at the site	52

LIST OF FIGURES

Fig. (5.5) 220 kV,66 kV transmission lines	52
Fig. (5.6) Tension tower	53
Fig. (5.7) pipeline & Transmission lines rotes and crossings	54
Fig (5.8) Transmission lines & pipeline route of Taba / Sharm from	
K.P 76 to K.P 80	55
Fig (5.9) Transmission lines & pipeline route of Taba / Sharm from	
K.P 80 to K.P 84	56
Fig (5.10) Transmission lines & pipeline route of Taba / Sharm from	
K.P 84 to K.P 88	57
Fig (5.11) Transmission lines & pipeline route of Taba / Sharm from	
K.P 88 to K.P 92	58
Fig (5.12) Transmission lines & pipeline route of Taba / Sharm from	
K.P 92 to K.P 96	59
Fig (5.13) Transmission lines & pipeline route of Taba / Sharm from	
K.P 96 to K.P 100	60
Fig (5.14) Transmission lines & pipeline route of Taba / Sharm from	
K.P 100 to K.P 104	61
Fig (5.15) Transmission lines & pipeline route of Taba / Sharm from	
K.P 104 to K.P 108	62

LIST OF SYMBOLS AND ABBREVIATIONS:

ATP : Alternating Transient Program

AGA : American Gas Association.

AC : Alternating Current

CCM : Conventional Circuit Model .

CSM : Charge simulation method

CP : Cathodic Protection

J : Current density

DC : Direct Current

E : Electric Field

EMTP : Electromagnetic transient program

EPRI : Electric Power Research Institute

EPR : Earth Potential Rise

EMI : Electro Magnetic Interference

ECT : Electrostatic Charge Tendency.

EHV : Extra High Volt.

F : Frequency.

FEM : Finite element method

FDM : Finite difference method

HVAC : High Voltage Alternating Current

LFI : Low frequency induction

LCC : Line Cable Constants.

Z_m : Mutual impedance

μ : Magnetic permeability of air.

 Z_{ma} : Mutual impedance between the metallic pipeline and phase a.

Z_{mb} : Mutual impedance between the metallic pipeline and phase b.

 Z_{mc} : Mutual impedance between the metallic pipeline and phase c.