SYNTHESIS AND SPECTRAL STUDIES ON HETEROCYCLIC NITROGEN COMPOUNDS.

Thesis

Submitted for The Degree of (Ph.D)

By

NADIA YOUSSEF MEGALLY

(M.Sc.)

Supervised By.

Prof.Dr. A.F.M.Fahmy

Prof.Dr. H.A.Abd.El-Hamid

Prof.Dr. G.A.Mina

Chemistry Department Faculty of Science Ain Shams University

Cairo

1996

SYNTHESIS AND SPECTRAL STUDIES ON HETEROCYCLIC NITROGEN COMPOUNDS.

Thesis Advisors

Prof.Dr. A.F.M.Fahmy

Prof.Dr. H.A.Abd.El-Hamid

Prof.Dr. G.A.Mina

Approved

. H. A. Add. Hart

Head of The Chemistry Department

Prof.Dr. A.F.M.Fahmy

A.F. M. Fahmy

Acknowledgment

The author wishes to express her deep thanks and gratitude to *Prof.Dr.A.F.Fahmy*, head of chemistry department and professor of organic chemistry, Chemistry department, Faculty of Science, Ain Shams University, for suggesting the problem, valuable discussion and criticism.

The author also wishes to express her gratitude to *Prof.Dr. Hoda Abdel-Hamid*, Prof of organic chemistry, Faculty of Science, Ain Shams University, for her encouragment, valuable help, and criticism during the progress of the work.

Thanks to *Prof.Dr.G.A.Mina*, Prof. of organic chemistry, Faculty of Education, Alexandria university, for his supervision and encouragement.

Thanks to *Prof.Dr. Raifa.A.Hassanein* Prof. of physiology, Botany department. Faculty of Science, Ain Shams University, for the great help in the biological part.

Abstract

Synthesis and spectral studies on Heterocyclic Nitrogen Compounds

Nadia Youssef Megally

Unpublished Doctor of Philosophy Dissertation, Ain Shams University, Abbassia, Cairo, Egypt

The main purpose of this work is to synthesise heterocyclic rings like benzoxazones, oxadiazoles, imidazolidines, triazolines, thiadiazoles, quinazolines, and pyrimidines starting from:

2-Cyano-4'-hydroxy-3'-methoxy cinnamoyl-,azide, acid chloride and isothiocyanate were used as precursors for the synthesis of these heterocyclic systems.

A full spectral study using Infrared, ¹H NMR and Mass spectroscopy on all the synthesised heterocyclic systems, was performed.

Biological activity of some of the prepared heterocycles such as pyrimidines, imidazolidines, triazolines, as well as diaryl urea and diaryl thiourea were studied and prove that, all of them have hormonal nature.

List of Tables

Table		Page
1. Chemi	ical shifts (δ ppm) of (6a-c)	r u g e
2 Chemi	cal shifts (δ ppm) ¹³ C NMR of (6a)	
3. Chemi	cal shifts (δ ppm) of (7a-c)	64
4. Ions a	nd their relative abundance of (8a)	••••••••••••••••••••••••••••••••••••••
5. Ions ar	nd their relative abundance of (8b)	
6. Ions ar	nd their relative abundance of (8c)	90
7. Ions de	etected from (8a-c) and their	09
relative	e abundance	
8. Ions an	d their relative abundance of (10)	92
9. Ions an	d their relative abundance of (13)	93
10. Ions and	d their relative abundance of (18)	98
11. Ions and	d their relative abundance of (19)	101
12. Ions and	their relative abundance of (22)	100
13. Ions and	their relative abundance of (24)	109
14. Ions and	their relative abundance of (27)	114
15. Ions and	their relative abundance of (28a)	124
16. Ions and	their relative abundance of (29b)	127
17. Ions and	their relative abundance of (28b-29c)	122
18. Growth o	of Hordeum coleoptile section	132
as affecte	ed by different concentrations	*******
of compo	ounds (6a and 10)	126
19. Growth o	f Hordeum coleoptile section	130
as affecte	d by different concentrations	**********
	· ·	

	of compound (22)	137
	of compound (22)	
20.	Growth of Hordeum coleoptile section	
	as affected by different concentrations	
	of compounds (28a, 29b and 28b = 29c)	.138
21	Characterisation data of diarylureas (6a-c)	142
۷.	Characteristics of melting points	
22.	Melting points and mixed melting points	
	of compounds (6a-c)	143
23	Characterisation data of anilides (7a-c)	144
25.	Characterisans (80 c)	146
24.	. Characterisation data of imidazolidinones (8a-c)	140
25	Characterisation data (28a, 29b, 28b=29c)	158

CONTENTS

SUMMARY	Page
INTRODUCTION	
PART I	1
CHEMISTRY OF ORGANIC AZIDES	1
PREPARATION OF AZIDESA- Carbamoyl azidesB- Acid azides	1
CHEMICAL REACTIONS OF ORGANIC AZIDES 1- Decomposition reactions	6
SPECTROSCOPIC STUDIES ON ORGANIC AZIDES	
PART II	
SOTHIOCYANATES IN HETEROCYCLIC SYNTHESIS	.22
INTRODUCTION	
SOME BASIC CONSIDERATION	
SYNTHESIS OF ISOTHIOCYANATES2 1- Synthesis of alkyl and aryl isothiocyanates	n e

2- Synthesis of acyl isothiocyanates	35
1- Synthesis of four-membered heterocycles	36 37 45 50
DISCUSSION	
AIM OF THE WORK	53
CHAPTER I DECOMPOSITION REACTIONS OF 2-CYANO-4'-HYDRO 3'-METHOXY CINNAMIC ACID AZIDE	55
CINNAMIC ACID AZIDE	
DECOMPOSITION REACTIONS OF 2-CYANO-4'-HYDR 3'-METHOXY CINNAMOYL AZIDE	60 67 72
CHAPTER II	
E.I MASS SPECTRAL STUDY	81

CHAPTER III
THE USE OF 2- CYANO - 4'- HYDROXY-3'-METHOXY
CINNAMOYL ISOTHIOCYANATES IN HETEROCYCLIC
SYNTHESIS
Synthesis of 2-cyano-4'-hydroxy-3'-methoxy cinnamoyl
isothiocyanates105
I- REACTION OF ISOTHIOCYANATE WITH PHENYL
HYDRAZINE
Synthesis 1-phenyl-5-[2'-(4"-hydroxy-3"-methoxy)
cinnamonitrile]-1,2,4-triazoline-3-thione106
II- REACTION OF ISOTHIOCYANATE WITH BENZOYL
HYDRAZINE111
Synthesis of 2-phenyl-5-[N-2'-cyano-(4"-hydroxy-
3"methoxy)-cinnamide] 1,3,4-thiadiazole112
III. REACTION OF ISOTURE
III- REACTION OF ISOTHIOCYANATE WITH ANTHRANILIC
ACID
Synthesis of 3-[2'-cyano-(4"-acetate-3"-methoxy) cinnamoyl]
quinazolin-4-one-2-thione117
IV- REACTION OF ISOTHIOCYANATE WITH AROMATIC
AMINES
AMINES121
V- REACTION OF ISOTHIOCYANATE WITH GLYCINE134
Synthesis of 1-carboxymethyl-3H-5-(4'-hydroxy-3'-methoxy)
phenyl methylene-6-imino-hexahydropyrimidine-4-one-2
thione134
<u>CHAPTER IV</u>
BIOLOGICAL ACTIVITY

FIGURES

EXPERIMENTAL	139
REFERENCES	160
ARABIC SUMMARY	