APPLICATION OF SPECTROSCOPIC TECHNIQUES AS FAST DETECTION METHODS FOR THE QUALITY OF SOME FOODS

By

FATHY MOHAMED SABER MEHAYA

B.Sc. Agric. Sci. (Food Technology), Kafer EL-Sheikh University, 2001M.Sc. Agric. Sci. (Food Technology), Cairo University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

APPLICATION OF SPECTROSCOPIC TECHNIQUES AS FAST DETECTION METHODS FOR THE QUALITY OF SOME FOODS

By

FATHY MOHAMED SABER MEHAYA

B.Sc. Agric. Sci. (Food Technology), Kafer EL-Sheikh University, 2001M.Sc. Agric. Sci. (Food Technology), Cairo University, 2010

This thesis for Ph.D. degree has been approved by: Dr. Adel Zaki Mohamed Badee Prof. Emeritus of Food Technology, Faculty of Agriculture, Cairo University Dr. Mohamed Farag Khallaf Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Hany Idrees Khalil Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Date of Examination: / / 2016

APPLICATION OF SPECTROSCOPIC TECHNIQUES AS FAST DETECTION METHODS FOR THE QUALITY OF SOME FOODS

By

FATHY MOHAMED SABER MEHAYA

B.Sc. Agric. Sci. (Food Technology), Kafer EL-Sheikh University, 2001M.Sc. Agric. Sci. (Food Technology), Cairo University, 2010

Under the supervision of

Dr. Hany Idrees Khalil

Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University, (Principal Supervisor)

Dr. Mohie Mostafa Kamil

Researcher Prof. Emeritus of Food Technology, Department of Food Technology, National Research Center.

ABSTRACT

Fathy Mohamed Saber Mehaya. "Application of Spectroscopic Techniques as Fast Detection Methods for the Quality of Some Foods". Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2016.

The present study aimed to evaluate the quality, including adulteration, of honey and meat by classical and advanced methods (HPLC, GC, SDS-PAGE and PCR) in parallel with FT-IR and Raman spectroscopic as fast and easy detection methods.

Physicochemical properties of honey and honey adulterated with glucose or sucrose were determined. Total soluble solids (TSS), pH and electrical conductivity of honey and its adulterated samples ranged between (84.10 - 84.50%), (3.80 - 4.63) and (11.73 - 232.32 μ S), respectively. The viscosity of adulterated honey with glucose syrup was the highest. Results of HPLC indicated that authentic honey had higher fructose/glucose ratio than adulterated honey samples. Also, honey adulterated with sucrose syrup had the highest HMF content.

The FT-IR and FT-Raman spectral peaks of sucrose, glucose and fructose were identified at different concentrations. Selected main specific peaks provide the best calibration curves with (r²>0.9). Also, FT-IR and FT-Raman techniques were used to evaluate authentic honey and its adulterated with glucose and sucrose syrup.

Chemical composition of meat showed that moisture and fat content were higher in pork meat than in chicken and beef. On contrary, protein content of beef was the highest. Color parameters and pH demonstrated that beef meat had the highest redness parameter and pH value. While, the pure minced pork had low redness value (6.14), and minced beef meat adulterated with 25, 50 and 75 % of pork meat was 19.10, 16.22 and 11.87, respectively.

FT-IR spectral bands of beef, chicken and pork meats showed beef meat had a specific spectral bands at 900, 977, 1040, 1110, 1169 &

1303 cm⁻¹. Pork meat had unique peaks at 1075, 847 and 720 cm⁻¹, while chicken meat had specific peaks at 1152, 1093, 950 and 765 cm⁻¹.

The FT-IR spectra afford information on the functional groups of lard. Calibration curve of pork fat (lard) was prepared by concentration levels at 10, 20, 40, 50 and 70%. The obtained standard curves of selected important peaks related to lipids had higher ($R^2 > 0.9$). The identification of beef burger adulterated with pork meat using FTIR and Raman techniques showed that the intensity of wave numbers that referred to amide I and amide II was decreased when the adulteration percentage of pork meat increased, while the major lipid peaks were relatively more intense when the adulteration ratio of pork meat was increased. Moreover, the FT-IR and FT-Raman spectra of extracted fat from beef burger that adulterated by pork fat at (10 & 20%), indicated that there are good correlations ($R^2 > 0.9$) between control burger and adulterated burger by pork fat in some specific spectral band corresponding to pork fat structure.

Protein profile of chicken, beef and pork by SDS-PAGE showed that pork meat had specific bands at 142, 97and 17 kDa, while beef meat had unique bands at 139, 65 and 8 kDa, and chicken meat had specific bands at 129, 110 and 88 kDa.

Simplex and Multiplex PCR with species specific primers were successively applied for discriminating between beef, chicken and pork in minced meat and its mixtures without interfering.

Gas chromatography-flame ionization detector was used to detect the adulteration of minced beef and chicken meat with pork meat based on fatty acid profiles. The results indicated that the proportion of oleic C18:1/ linoleic C18:2 ratio was decreased when the adulteration ratio with pork was increased. In addition, the proportion of C18:1/ C18:2 ratio was 1.23 and 4.07 for chicken and pork fat, respectively. This ratio increased when the adulteration ratio with pork was increased.

Keywords: Spectroscopic techniques, FTIR, Raman, PCR, SDS-PAGE, GC, honey, meat, quality, adulteration, lard

ACKNOWLEDGMENT

First of all, grateful thanks to **ALLAH** who enabled me to overcome all the problems, which faced me through this work and blessed me with his unlimited graces.

I wish to express my thanks, special gratitude to **Prof. Dr. Hany Idrees Khalil**, Prof. of Food Science, Faculty of Agriculture, Ain Shams University, for his supervision, kind assistance and guidance through revision of the manuscript of this thesis and his effort provided to achieve this work.

I wish to express my thanks, deepest gratitude to **Prof. Dr**. **Mohie Mustafa Kamil,** Prof. Emeritus of Food Technology, National Research Center for his moral support, encouragement throughout study guidance through revision of the manuscript of this thesis and his effort provided to achieve this work.

I gratefully acknowledge the Science and Technology Development Fund (STDF) Egypt, Grant No 1062. for its financial support to this work.

Also, my sincere thanks go to **Prof. Dr. Nefisa Abbas Hegazy,** Prof. Emeritus of Food Technology, National Research; **Dr. Ihab Salah Ishoush** Assistant Prof. of Food Sci., Food Sci. Dept., Fac. of Agric., Ain Shams Univ. and **Prof. Dr. Hisham Moharram** Prof. of Food Technology, National Research, who gave me the confidence and guidance to explore my research.

My sincere thanks also go to **Prof. Dr. Abdel Hfeez Shouk** Prof. of Food Sci. and Technol., Food Technol. Dept., National Research Center; **Dr. Mohamed Gad Allah** Assistant Prof. of Food Sci. and **Dr. Abdel Fattah Abdel Kareem** Lecture of Food Sci., Food Sci. Dept., Fac. of Agric., Ain Shams Univ., who gave me the confidence and guidance to explore my research.

I gratefully acknowledge the research and technical stuff of the Central Lab. of Food and Nutrition Division, and **all stuff members of Food Technology lab,** National Research Centre for their assistance and support for using the various laboratory equipments.

Words fail me to express my appreciation to **my family** for their support and help me through my life and study.

CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1. Honey	6
2.1.1. Honey quality	6
2.1.2. Physicochemical properties of authentic and adulterated	
honey	7
2.1.3. Spectroscopic techniques	11
2.1.3.1. Fourier-transform Infrared (FT-IR) technique	11
2.1.3.2. Raman spectroscopy	16
2.2. Meat	18
2.2.1. Spectroscopic methods	18
2.2.1.1. Fourier-transform Infrared (FT-IR) technique	19
2.2.1.2. Raman spectroscopy	23
2.2.2. protein- based analysis	25
2.2.2.1. Sodium dodecyl sulfate- PAGE (SDS-PAGE)	26
2.2.3. DNA-based methods.	28
2.2.3.1 PCR-based techniques	28
2.2.3.2. PCR using species-specific primers	29
2.2.3.3 Species-specific multiplex PCR	33
2. 2.4. Identification of beef, chicken and pork by GLC	36
3. MATERIALS AND METHODS	39
3.1. MATERIALS	39
3.1.1. Raw materials	39
3.1.2. Chemicals and reagents.	39
3.2. METHODS	40
3.2.1 Honey	40

3.2.1.1. Preparation of sugar standard solutions
3.2.1.2. Adulterated honey samples
3.2.1.3. Determination of electrical conductivity, pH and TSS
3.2.1.4. The apparent viscosity
3.2.1.5. Color measurement
3.2.1.6. Fourier transform infrared spectroscopy (FT-IR)
3.2.1.7. FT-Raman spectroscopy
3.2.1.8. Determination of sugars by high performance liqui
chromatography (HPLC)
3.2.1.9. Determination of hydroxymethylfurfural by HPLC
3.2.1.10. Sensory evaluation
3.2.2 Meat
3.2.2.1. Preparation of meat samples for PCR
3.2.2.2. Preparation of meat samples for FTIR and SDS
PAGE electrophoresis.
3.2.2.3. Preparation of adulterated beef meat with pork mea
or lard for FTIR and Raman spectroscopy
3.2.2.4. Preparation of meat samples for GLC
3.2.2.5. Determination of chemical composition
3.2.2.6. Color measurement
3.2.2.7. Determination of pH
3.2.2.8. Extraction of proteins for SDS-PAGE
3.2.2.9 Preparation of electrophoresis buffers, solutions an
stains
3.2.2.10. DNA extraction for PCR technique
3.2.2.11. Oligonucleotide primers design
3.2.2.12. Simplex PCR
3.2.2.13. Multiplex PCR
3.2.2.14. Amplified product detection.
3.2.2.15. Fat extraction

3.2.2.16. Determination of fatty acid profile of meat samples	
by GLC	
3.2.2.17. Statistical analysis	
4. RESULTS AND DISCUSSION	
4.1. Fast and easy detection methods of honey quality	
4.1.1. Physicochemical properties of honey	
4.1.2. Identification and quantification of sugar profiles in	
honey by HPLC	
4.1.3. Determination of HMF in honey by HPLC	
4.1.4. Evaluation of honey quality by spectroscopic techniques	
4.1.4.1. FT-IR for the identification and quantification of	
sucrose, glucose and fructose	
4.14.2. FT-IR spectral of authentic and adulterated honey	
4.1.5. Evaluation of some commercial honey by FT-IR and	
HPLC	
4.1.5.1. FTIR	
4.1.5.2. High performance liquid chromatography	
4.1.6. Raman spectroscopy	
4.1.6.1. Identification and quantification of sucrose, glucose	
and fructose	
4.1.6.2. Detection of honey adulteration by Raman	
spectroscopy	
4.2. Easy and fast detection methods of local meat	
4.2.1. Physicochemical properties of raw meats	
4.2.1.1. Chemical composition of meat	
4.2.1.2. Color parameters and pH of beef meat and its	
adulterated with pork meat	
4.2.2. Spectroscopic techniques	
4.2.2.1 FT-IR spectral bands of beef, chicken and pork	
meats	

4.2.2.2. Identification and detection of pork meat and large
using FT-IR
4.2.2.2.1. Lard standard curve of FT-IR spectroscopy
4.2.2.2.2. FT-IR spectra of adulterated beef burger by port
meat
4.2.2.2.3. FT-IR spectra of extracted fat from adulterated
burger by pork meat
4.2.2.2.4. FT-Raman spectra of adulterated beef burger by
pork meat
4.2.2.3. FT-IR spectra of extracted fat from adulterated
burgers by lard
4.2.2.4. FT-Raman spectra of adulterated beef burger by
lard
4.2.2.5. Raman assignments of extracted fat from
adulterated beef burger by lard
4.2.3. Electrophoreses SDS technique to identify protein
pattern of chicken, beef and pork meat
4.2.4. PCR technique to detect beef meat adulteration with
pork meat
4.2.4.1. DNA extraction.
4.2.4.2. Simplex PCR specificity
4.2.4.3. Multiplex PCR specificity
4.2.4.4. Multiplex PCR for adulterated meat samples
4.2.5. Identification of beef, chicken and pork by GLC
4.2.5.1. Fatty acids profile of beef, pork and their mixtures
4.2.5.2. Fatty acids profile of chicken, pork and their
mixtures
S. SUMMARY AND CONCLUSION
5. REFERENCES
ARABIC SUMMARY

LIST OF TABLES

No.	TITLE	Page
1	Effect of honey adulteration with glucose or sucrose syrup on total soluble solids (TSS), pH and electrical conductivity (EC) (mean \pm SD)	53
2	Color parameter of adulterated honey with glucose or sucrose syrup	54
3	Apparent viscosity properties of honey and its adulterated samples	56
4	Sensory evaluation of natural and adulterated honey.	58
5	Sugars profiles of adulterated honey as determined by high performance liquid chromatography (HPLC)	61
6	FT-IR spectral bands of sucrose solution at wave numbers 1048, 1138 and $990 \pm 5 \text{ cm}^{-1}$.	65
7	FT-IR spectral bands of glucose solution at 1152 (A), 1105 (B) 1077 (C), 1030 (D) and 985 (E) ±5 cm ⁻¹	68
8	FT-IR spectral bands of fructose solution standard curve at 1632 (A), 1084 (B) and 1057 (C) ± 5 cm ⁻¹	72
9	FT-IR ATR spectral bands of authentic and adulterated honey with glucose syrup (GS) and sucrose syrup (SS)	78
10	FT-IR ATR spectral bands of commercial honey samples from local market	82
11	Sugars contents of some commercial honey products that determined by high performance liquid chromatography (HPLC)	84
12	Assignments of FT-Raman spectral bands of fructose at different concentration levels	88

No.	TITLE	Page
13	Assignments of FT-Raman spectral bands of glucose	90
14	Assignments of FT-Raman spectral bands of sucrose	94
15	FT-Raman spectral bands of authentic and adulterated honey	97
16	Physicochemical properties of meat (mean ±SD)	99
17	Color parameters and pH of fresh beef, chicken and pork meats	100
18	Color parameters of adulterated minced beef with pork meat.	101
19	Assignments of FT-IR ATR spectral bands of beef chicken and pork meat samples	105
20	FT-IR assignments of selected spectral bands of lard	108
21	FT-IR spectral peaks of adulterated beef burger by different pork meat ratios.	110
22	FT-IR assignments of extracted fat from beef burger contains pork meat	114
23	FT-Raman assignments of minced beef with different ratio of pork meat	120
24	FT-IR functional groups of extracted fat from beef burger adulterated by lard	122
25	FT-Raman assignments of adulterated beef by different ratio of lard	128
26	FT-Raman assignments of beef burger adulterated by10 and 20% lard	130
27	Electrophoresis SDS separation patterns of from pork, chicken and beef proteins	134

No.	TITLE	Page
28	Detection of beef meat adulteration with pork based on fatty acid profiles	143
29	PLS regression of predictions and actual pork meat percentage in beef meat.	
30	Detection of chicken meat adulteration with pork depending on fatty acid profile (%)	147
31	PLS regression of predictions and actual pork meat percentage in chicken meat.	

LIST OF FIGURES

No.	TITLE	Page
1	HPLC standard curves of fructose (A), glucose (B) and sucrose (C)	60
2	Typical HPLC chromatograms of HMF contents in honey: A-Authentic and adulterated honey with 25, 50 and 100 % sucrose syrup. B- Authentic and adulterated honey with 25, 50 and 100 % glucose syrup.	62
3	HMF content (mg/100g) of natural and adulterated honey with glucose or sucrose syrup	63
4	FT-IR spectra of sucrose solution at 5, 10, 15, 20 and 40% concentration levels	66
5	FT-IR of sucrose standard curves at wave numbers 1048, $1138 \text{ and } 990 \pm 5 \text{cm}^{-1}$	67
6	FT-IR spectra of glucose solution at concentration levels 10, 15, 20 and 40%	69
7	Standard curves of glucose at several wave numbers (A-E)	71
8	FT-IR spectra of fructose at 10, 15, 20 and 40% concentration levels.	73
9	Standard curves of fructose at 1632 (A), 1084 (B) and 1057 (C) $\pm 5~\text{cm}^{-1}$.	74
10	FT-IR spectral bands of authentic and adulterated honey with different concentration levels of glucose	75
11	FT-IR spectral bands of authentic and adulterated honey with different sucrose concentration levels	77