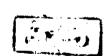
AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING


NUMERICAL SIMULATION OF SOLIDIFICATION IN SIMPLE SHAPED CASTINGS

313.82

Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Mechanical Engineering

112 1

bу

Mostafa Omar El-Farouk Mostafa El-Bealy B.Sc. In Mechanical Engineering [1981]

CAIRO, 1990

NUMERICAL SIMULATION OF SOLIDIFICATION IN SIMPLE SHAPED CASTINGS

M.Sc. Thesis Mechanical Engineering

SUPERVISORS

Prof. Dr. A.S. Sabbagh

Prof. Dr. N. El-Mahallawy

Dr. Eng. A. M. Assar

Examiners

Signature

Prof. Dr. A. E. El-Meheri A Elmehand Prof. Dr. M. A. Taha A College Prof. Dr. N. A. El-Mahallawy Note that

STATEMENT

This dissertaion is submitted to Ain Shams University for the degree of Master in Mechanical Engineering.

The work included in this thesis was carried out by the author in the Department of Design and Production Ain Shams University, from 2-10-1986 to 17-5-1990.

No Part of this thesis has been Submitted for a degree or a qualification at any other University or Institution.

Date : 1 -5 - 1990

Signature: Mountafa St Healy

Name : Mostafa Omar El-Farouk

TO MY DEAR PARENTS

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to prof. Dr. Eng. Ahmed S. El-Sabbagh, Prof. Dr. Eng. Nahed A. El-Mahallawy and Dr. Eng. Abdel-Wahed M. Assar, for their considerable supervision, guidance and helpful discussions throughout this work.

The author sincerely acknowledges the help of Prof. Dr. Ahmed E. El-Meheri, Metallurgical Department, Faculty of Eng., Cairo University for providing three months scholarship (Summer 1989) in TU. Berlin.

The author's sincere gratitude is due to Prof. W. Reif, head of Metall-Forschung Insitut Metall-Kunde, TU-Berlin and to the assistants and technicians at the institute.

Thanks are due to Prof. Dr. Eng. Mohammed A. Taha, Department of Design & Production Engineering, Ain Shams University for his valuable assistance and for providing all the capabilities of the Metal Casting laboratory.

Thanks are also due to my colleagues and technicians at the Metal casting and Metallurgical Loboratories in the Department of Design and Production Engineering, Faculty of Eng. Ain Shams University for their assistance and encouragement.

Summary

In the recent years, studying the natural convection current has been considered as one of the most important standard phenomenon in the solidification of casting and ingot processes. This phenomenon plays an important role in the formation of macro/microstructure which will affect the mechanical properties of cast structures and also will affect macrosegregation which deteriorates the quality of final products. It has been shown that natural convection current depends mainly on the constitution of the alloy system, the composition of alloy, the thermal parameters of alloy and the superheat.

The present work aims at studying the effect of natural convection during the solidification processes on the temperature distribution and the velocity profiles in Al-4.5% Cu and Al-12% Si alloys solidified directionally at different superheats and todescribe the effect of convection on the macro/microstructure and segregation.

For this purpose a mathematical model was set to describe the fluid flow and heat transfer phenomena during solidification process for two - dimensional rectangular mould cavity. The model used to determine the temperature distribution and the velocity profiles as a function of time.

An experimental set up was designed constructed, calibrated and then used for specimen preparation in which

temperature measurement in seven predetermined positions was achieved. Two alloys Al-4.5% Cu and Al-10% Si are used. These rectangular specimens $80 \times 40 \times 20$ mm in the length, height and width respectively were directionally solidified against a steel end chill using the constructed apparatus.

The process variables taken into consideration are :

- Superheat of the melt : ranging from 20 to 75°C.
- Alloy constitution.

In Al-4.5% Cu the volume fraction of the second phase (Cu Al₂) and the grain size were measured. The results for different superheats indicate that the volume fraction increases in the lower part of the specimen and as the superheat decreases and also it decreases as the distance from chill increase until the steady state value is reached. The results indicate also that the grain size increases as the superheat decreases and also increases as the distance from chill increases.

In Al-12% Si the volume of fraction of (primary Si) was measured. The results for different superheats indicate that the volume fraction increases for the lower part of the ingot as the superheat decreases.

In the present work, comparison between experimental and computed results of cooling curves was made. It also includes the different solidification parameters at different phases, the shape of liquidus and solidus isotherm and the relation between the heat transfer coefficient and

time and chill temperature. Additionally, it includes the convection velocity profiles with time.

A general discussion is presented including the effect of temperature gradient on the velocity modes and also the effect of convection on solidification process, macrosegregation and grain size in view of the convection current velocity and formation of new crystals.

CONTENTS

Pag
Introduction1
CHAPTER (1): LITERATURE SURVEY
1.1 Solidification of CastingSand IngotS3
1.2 Natural Convection Types5
1.3 Grain Size9
1.3.1 Effect of convection on separation
of crystels9
1.3.2 Effect of convection on columnar
- equiaxed transition11
1.3.3 Effect of convection on multiplication
of crystals3
1.4 Macrosegregation
1.5 Governing Partial Differential Equations22
1.6 Numerical Analysis
1.6.1 Finite - difference technique25
1.6.2 Finite - element technique25
1.7 Mathematical Treatment Methods Of
Convection currents27
1.7.1 Marker and cell computing (MAC)
method27
1.7.2 Similarity theory29
1.7.3 Simpler method32
CHAPTER (2): MATHEMATICAL MODELLING AND NUMERICAL
SOLUTION

Р	'agı
Introduction	34
2.1 Notation And Parameters	34
2.2 Governing Differential Equations	36
2.3 Discretization Equation For Two	
Dimensional Situation	37
2.3.1 Discretisation equation for	
continuity equation	39
2.3.2 Discretization equation for the	
momentum equations	39
2.3.3 Discretization equation for the	
energy equation	41
2.4 Mathematical Treatment For Pressure	
Field Evaluation	42
2.4.1 Guessed velocity and pressure	
fields	42
2.4.2 Pressure and velocity corrections	43
2.5 Discretization Pressure Correction	
Equation	4 4
2.6 Discretization Pressure Equation	16
2.7 Simpler Algorithm Procedures	17
2.8 Dimensions And Discretization	
Parameters "Grid System"4	8
2.9 Initial And Boundary Conditions5	0
2.10 Thermal Parameters5	2
2.11 Flow Chart5	2
CHAPTER (3): EXPERIMENTAL WORK	7
Introduction5	7
3.1 Apparatus5	7

	Pag
3.1.1 Melting furnace	59
3.1.2 Calibration of 2-windings electrical	
furnace	59
3.1.3 End chill mould	
3.1.4 Calibration of end chill mould	
3.2 Temperature Measurements	
3.3 Alloy Preparation	
3.4 Experimental Procedures	
3.5 Plan Of Experimental Work, Measurements	
And Examinations	.72
3.6 Macrostructure Examination	
3.7 Microstructure Examination	
	• , •
CHAPTER (4): EXPERIMENTAL RESULTS	70
4.1 Cooling Curves	
4.1.1 Effect of melt superheat on cooling	. 76
rate and solidification rate	7.0
4.1.2 Effect of melt superheat on local	. / 5
solidification time	
4.1.3 Effect of melt superheat on isotherm	. 88
velocities	
4.2 Grain Size	95
4.2.1 Effect of melt superheat on grain	
Size	
4.3 Macrosegregation	98
4.3.1 Effect of melt superheat on volume	
fraction of Cu Al2	8 8
4.3.2 Effect of melt superheat on volume	
fraction of primary Si	00

	Page
4.3.3 Analysis of volume fraction of	
present investigation	.100
CHAPTER (5): SIMULATED RESULTS, GENERAL DISCUSSIONS	
AND CONCLUSIONS	106
5.1 Cooling Curves	106
5.2 Effect Of Melt Superheat On Cooling and	
Solidification Rates	106
5.2.1 Effect of melt superheat on cooling	- • •
& solidification rates for Al-4.5% Cu	
alloy	114
5.2.2 Effect of melt superheat on cooling	1
solidification rates for Al-12% Si	
alloy	114
5.3 Effect Of Melt Superheat On Temperature	***
Profiles1	17
5.4 Effect Of Melt Superheat On Solidification	
Parameters	17
5.4.1 Effect of superheat on liquid and	1,
mushy zone temperature gradients1	22
5.4.2 Effect of superheat on liquidus and	42
solidus isotherm velocities) E
5.5 Effect Of Melt Superheat On The Shape Of	23
Liquidus And Solidus Isotherm	
5.6 Heat Transfer Coefficient	:8
5.6.1 Effect of melt superheat on heat	14
transfer coefficent	
5.7 Velocity Patterns	
5.7.1 Effect of melt superheat on velocity	9
patterns of Al-4.5% Cu	
F======= VA ALT4.D4 UU	4

	Pag
5.7.2 Effect of melt superheat on velocity	
patterns of Al-12% Si	.141
5.7.3 Analysis of velocity patterns	.148
5.8 General Discussion	.15 3
5.8.1 Effect of convection on solidification	
process	15 3
5.8.2 Effect of temperature gradient on the	
velocity modes	158
5.8.3 Effect of convection on the shape of	
isotherm	164
5.8.4 Effect of convection on the shape	
macrosegregation	166
5.8.5 Effect of convection on the grain	
size	168
5.9 Conclusions	179
5.9.1 Grain size (G=)1	
5.9.2 Volume fraction (Vf)1	
5.9.3 Convection velocity (V_c) 1	
5.9.4 Effects of convectionl	
EFERENCES1	82
RABIC SUMMARY1	85

There is true basic that the natural convection currents phenomenon is inherently associated with the majority of solidification processes which are driven by density fluctuations in the fluid that are induced by inhomogeneous temperature distribution or different impurity concentration within the system. Natural convection currents can be classified into two categories : the first is thermal convection due to the temperature gradients and the second is solute convection due to the solute gradients which effect in hyper-eutectic alloys iş higher than in hypo-eutectic and eutectic alloys.

The convection currents affect mainly the structure of casting where the importance of generated convective flow is usually desirable to obtain fine grained equiaxed structure in casting as the convection currents help develop equiaxed zones. The solute convection also affects the solute redistribution (macrosegregation) in the fluid during solidification and cause some of macrosegregation types.

For treating this phenomenon to predict by the the free convection currents and to get more detailed information about the solidification processes such as controlling grain structure in cast metal, the explaining the mechanism of transition from columnar to equiaxed zone in ingots and the macrosegregation such as gravity segregation and normal segregation, a mathematical model is set and solved.