STUDIES ON MINT RUST IN EGYPT

BY

WAFAA HANAFY ZAKY

A thesis submitted in partial fulfillment

of

the requirements for the degree of

632.425 W.H.

MASTER OF SCIENCE

İN

Agriculture

(Plant Pathology)

Department of Botany and Plant Pathology

Faculty of Agriculture

Ain Shams University

1990 .

Approval Sheet

STUDIES ON MINT RUST IN EGYPT

Вy

WAFAA HANAFY ZAKY

B.Sc. Fac. of Agric., Cairo Univ. 1977

This thesis for M.Sc. degree has been approved by:

Prof. Dr. T.M. Abd El-Hak.T. Abdel . Hak.

Ex. Director of Plant Path. Inst.

Prof. of Plant Pathology

Prof. Dr. M.M. El-Zayat. M.M. & Zaypt
Prof. of Plant Pathology

Date of examination: 4 / / 1990

STUDIES ON MINT RUST IN EGYPT

BT

WAFAA HANAFY ZAKY

B. Sc. FAC. OF AGRIC., CAIRO UNIV. 1977

UNDER THE SUPERVISION OF

PROF. DR. M. M. EL-ZAYAT

PROF. OF PLANT PATHOLOGY

PROF. DR. I.S. ELYWA

PROF. OF PLANT PATHOLOGY

DR. M. A. AHMED

ASS. PROF. OF PLANT PATHOLOGY

<u>ABSTRACT</u>

Mint rust caused by Puccinia menthae Pers was widespread and prevalent in all mintfield, in Egypt. Pathogenicity tests on seven mint species were carried out. Data indicated that no symptoms were found on peppermint [Mentha piperita] leaves, while the other mint species were significantly different in their disease severity. M. crispa gave highest disease severity [60,86%] followed by M. aquatica [50,29%], M. arvensis [35,43%], M. candida [34,0%], M. viridis [33,29%], and M. rotundifolia [30,71%].

Disease severity significantly depends upon plant age, which being 54.91, 50.55 and 26.63% for 88, 109 and 67 days old, respectively.

Central Library - Ain Shams University

Temperature of 20°C was favourable to obtain the highest urediospores germination.

spearmint plants, which aged 67 days contained more amounts of reducing, total soluble sugar, free and total phenols compounds than that which were found as plant aged 88 or 109 days.

Higher amounts of reducing sugars and free phonals compounds were found in healthy plants of peppermint [resistant] compared with spearmint plants [susceptible].

Healthy spearmint plants contained more non-reducing and total sugars than peppermint.

In this study resistance of peppermint to rust disease depends upon thickness of palisade tissue and lower epidermis, where there were negative correlation between both of them and disease severity.

Tested Fungicides i.e. Bayleton, Byfidan, Tilt and Impact were effective in controling rust disease on spearmint. These fungicides led to a sharp decrease in essential oil compared with healthy plants, however, caused a clear increase in oil compared with diseased plants.

ACKNOWLEDGMENT

The authoress owe a deep debt of gratitude to PROF. DR. M.M. EL-ZATAT Professor of Plant Pathology, Agric. Botany and Plant Path. Dept. Faculty of Agriculture and Head of Agric. Science Department in the Institute of Environmental Studies and Research, Ain Shams University and to PROFESSOR DR. I.S. ELIWA Prof. of Plant Path. Agric. Botany and Plant Path. Dept. Faculty of Agriculture, Ain Shams University and DR. M.A. AFMED Ass. Prof. of Plant Path. Agric. Botany and Plant Path. Dep. Faculty of Agriculture, Ain-Shams University, for their supervision, kind attention and great help in accomplishing this work and continuous guidance.

Sincers thanks are also due to PROF. DR. M. A.

SHERIF., Soil and Water R. Inst. PROF. DR. T. M. ABD EL

HAE, EL HAE, Ex. Director of Pl. Path. Res. Inst.

DR. A. HILAL, Lecturer of Plant Path. Res. Inst.,

Agric. Res. Center for Their valuable help.

* * *

CONTENT

		Page .
×	INTRODUCTION	1
*	REVIEW OF LITERATURE	3
	I. The Causal Pathogen of Mint Rust	3
	II. Disease Distribution	5
	III. Urediospores Germination	6
	IV. Plant Age and Disease Incidence	
	V. Biochemical Changes Associated with Disease	
	Development	10
	1. Total Soluble Sugar Content	10
	2. Phenolic Compounds	15
	VI. Histological Studies	21
	VII. Chemical control	22
	VIII. Effect of Mint Rust Infection on Essenial Olis	
	Content	. 24
#	MATERIAL AND METHODS	
	I. Survey of Mint Rust Disease	
	Il. Pathogenicity Test and Varietal Reaction	27
	III. Germination of Mint Rust Urediospores	31
	IV. The Effect of Plant Age on Disease Severity	32
	V. Biochemical Changes Associated with Disease	. 32
	Development	22
	i. Determination of Soluble Sugars Content	
	2. Determination of phenolic Compound	
	3. Effect of Rust Infection under Various Plant A.	
	on Sugars and Phenolic Coupounds in Spearmint.	
	VI. Histological Studies	' 30
	VII. Chemical Control	137
	VIII. Effect of Mint Rust Infection and Chemical con	troi
	on Essemiai Oiis Content	
×	RESULTS	39
	I. Survey of Mint Rust [Puccinia menthae Pers] Asso.	
	with Spearmint [Mentha viridis].	
	II. Pathogenicity Test on Different Mint Plant	40
	Species	1
	III. Effect of Temperature and Incubation Period on	41
	Urediospores Germination	
	IV. Effect of plant Age on the Averages of Disea	
	VI. Effect of Plant Age and Mint Rust Infection on	47
	Chemical Compounds	-50
	VII. Biochemical Changes Associated with Disease	
	Development	·58
	1. Sugars Content	·59
	2. Phenols Content	·50

	V111.	Che Ef:	emi e fect	:a] : o	t T	OI Mi	1	ro t	I. Rt	15	t.	I	 M:	te	c	 1.	1 c	n	 , 9 <i>1</i> 2	14		71	1 <i>e</i>	Di	1 c	:a			Co) n	itz	74 ol
		on	Es:	s e n	11	31	ĺ	io	I s	5	Ct	מנ	t	er	ı C	٠.	٠	٠	 ٠		• •	٠	٠		•	٠	• •	•	•	•	*	77
¥	DISCUS	55 I (ON		٠.		٠.						٠.					•					٠	•								80
M	SUMMAI	R y				٠.		•	٠.		٠.		. ,				•							•			•					88
M	REFERI	enci	ES			٠.				٠	٠.						•									•		. ,				9]1
¥	ARABIC	c si	J IM	1R)																												

LIST OF TABLES

Ta	ble No.	age
<u>.</u>	Chemical name and rate of application of tested	, a
	Fungicides	38
.2 .	Survey and determination of mint rust [Puccinia	- 1
	menthae Pers) occuring naturally on spearmint [Nintha	,
,	viridis)	-41
3.	Effect of artificial inoculation of mint species with	
-	Mint rust [P. menthae] on average of disease severity.	422
4.	Effect of temperature and incubation period on the	ئے ان اور کے سال
:	percentage of urediospores germination of P, menthae.	45
5.	Effect of plant age on disease severity of rust	2
	on spearmint	48
6.	Effect of plant age and infection with mint rust	
	[P. menthae] on soluble sugar contents [mg/g fresh	? :
-	weight) of spearmint leaves	- 51
7.	Ratio of sugar and phenol contents (as percent) in	
_	infected spearmint leaves with P. menthae in relation	
-	to healthy ones.	59
Ā,	Effect of plant age and infection with mint rust	
- /	[P. menthae] on phenolic compounds [mg/g fresh weight]	
	of Spearmint leaves	55
9.	Effect of infection with mint rust [P. menthae] on sol	uble
-	sugar contents of spearmint and peppermint leaves	ا م ا ا الا
	[mg/g fresh weight]	60

10.	Effect of infection with rust [P. menthae] on phenolic	
	compounds of spearmint and peppermint leaves [mg/g	٠,
*	fresh weight])
11.	Correlation coeffecient between chemical compounds	3
*	and disease severity	5
12,	Effect of inoculation with [P. menthae] on the thickne	5.
	of mint leaves tissues [In U] of two species 6	В
1 3.	Correlation coefficient between leaf tissues and	
-	disease severity	4
14.	Effect of recommanded doses of some fungicides on	در سی
	control of mint rust on spearmint in 1989 7	5
15.	Effect of dosage of some fungicides on control of	
25 ·	mint rust on spearmint in 1990	6
16.	Effect of mint rust infection and some fungicides	
-	on essential oils content (g/i00 g fresh weight)	ن _ا ري
	in spearmint	8

LIST OF FIGURES

No.		Page
1.	Symptoms of mint rust on leaves of wild mint plants	
	(Mentha aquatic)	28
2.	Symptoms of mint rust on leaves of japanese mint	
	plants (Mentha arvensis)	29
3,	Symptoms of mint rust on leaves of spearmint plants	
	(Mentha viridis)	30
4.	Effect of artificial inoculation of Mentha species	
	with ment rust [P. menthae] on average of disease	
	severity	43
5.	Effect of temperature and incubation period on the	
	percentage of urediospores germination of	
	[<u>P. menthae</u>]	46
6.	Effect of plant age on disease severity (disease	
	index) of rust on spearmint	49
7.	Effect of plant age and infection with mint rust	
	[P.menthae] on soluble sugars content (mg/g fresh	
	weight) of spearmint leaves	52
8.	Ratio of sugars content [as percent] in infected	
	spearmint leaves with [P.menthae] in relation to	
	healthy ones	54
9.	Effect of plant age and infection with mint rust	
	[P.menthae] on phenolic compounds (mg/g fresh weigh	t)
	of spear mint leaves	56

INTRODUCTION

INTRODUCTION

Mint oil has a great commercial importnace all-over the world. In Egypt, the industry of essential oil was introduced more than 50 years ago. Therefore, several works have been published on the agricutural and the industrial aspects of essential oils resulting in development of such important industry. Mint occupys the most area [3087 feddan] belonged to aromatic plants [4384 feddan].

the environmental conditions prevaling in Egypt are favourable for widespread of several medicinal and aromatic plants, one of them mint is plants which is an important crop.

Egypt exports yearly dried leaves of spearmint and peppermint to some foreign countries. So the expansion in the cultivation of mint plants may be resulted in an increase in exportation of medicinal products. This could serve as a main source of national income.

Four main mint varieties are being cultivated in Egypt.

These mint varieties are known by some local names, the local, common, and scientific names of the four main mint varieties are mentioned in the following table.

Local Name	Сонноп Name	Scientific Name
Yabani	Japanese mint	Mentha arvensis var.
		Piperascens L.
Filfili	Peppermint	Mentha piperita L.
Lymoni	Bergamot mint	Mentha citrata Ehrb.
Baladi	Spearmint	Mentha viridis

Spearmint [Baladi] and peppermint [filfili] plants represent the most widely cultivated species of mint in Egypt while the other ones are cultivated for acadimic purpose and experimental work.

The mint oil is used for the flavouring of numberous pharmaceutical and oral preparations.

The lower grade of dried leaves of mint is sold for less money. This reduction in price is mainly attributed to infection with pathogenic organisms.

This work aimed to detect the behaviour of mint rust, its effects on the host and its oil as an important products. Also, detecting sensitivety of some varieties were carried out as well as evaluating some fungicides for either controlling or protecting against mint rust and effect of these chemical compounds on oil production.

REVIEW OF

_ITERATURE