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SUMMARY

The work presented in this <hesisis deveted tothe
study of the spectral problem of an crdinary differential
egquatiomstogether with the existence and uniqueness of the
solution for a mixed problem. The main theoretical
tool which is used is +the Raszulov method, which can
be described in general terms as follows:

Consider the mixed ©preblem of solving
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differential eqguation with initial copnditions with
respect to cne cf the independen“ variables and bcocundary

conditions with respsct +to tha other independent
variable, This probism can be partiticned into :two

problems with a complex paramezer, cne of them is the

boundary value oproblem (which we call the spectral

probliem) and +the ocother is the Cauchy problem for an
ordinary differential equation with respect *o the
time.

For the spectral oproblem, we establish, undar
certain conditions, a formula for +the expansion of
an arbitrary sufficiently smooth function of a real
argunent in a series of residuss of +<he sclution cof

that problemn.

From the sclution of the foragoing preblem
containing a complex parameter we construct the formal
solution of the mixed probklem, which can be expressed
as the total residue.
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The residue method was dustified, for the mixed
problem not containing the leading <ime derivative

in the boundary conditions.

The thesis contains three chapters:

In the first chapter we illustrated the construc-
tion of the solution of the spectral prcblem. It also
presents the essential definitions and +theorems, that

are of constant use in the sequel.

In chapter two we study the differ~n-ial eguation
cf order four with the two parameters (i,s) whare A
is a complex parameter, s is a positive integer

parameter (s # 0).

d %1__ - As4 EE_ - f 58 ¥ = h{Y),
a
d v *y

with the boundary conditions

Ll(Y) = ¥Y{o)
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Ly(¥) = ¥(1) = 0 L,(Y) =Y (1) = 0

which is called the spectral problem.

From this study we shall obtain the asymptotic
representations of the following:
The fundamen+al ~system of the particular solutiong of the

characteristic determinant of Green's function and
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its eigenvalues, the derivative bf the characteristic
determinant with respect to the complex parameter A and
the derivative of the numerator of Green's function
at its poles.

In chapter III we shallprove the existence and uniguenessof

the solutionof the mixed problem by using the residue method
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(1)
CHAPTER {1}

"INTRODUCTICGN AND BASIC DEFINITIONS"

Let us consider the following linear difrerantial
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wnere F(x) , P (a,x) , (k~1.n) are corntinucus functinrgwi-h rezpect -

#» € [a.b], o (X),3 (W) are polynemials cf crmpley paremetsr X oand =
s

vk K

independent .The functions B [a A) L {k=l.n) sre integral functiors

1

Fay
K =
I.e P (xA) =T P (&) n (1.1
X =0 Ju
where p  (#) ars contirucus functi-ngin ks irterval fe,nl It's olaay
Jou
that ,the homogenolz Adifferaptial ZIUET1on
‘/"7) \fan__, J
¥ (e, N) P (a2,0) vy CRLAD =L 5 la, N v, Ay o= D CILi
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+p {m, X))y 4. ... .. ~p (#,n)vy = C NP
d = 1 n n 1

by “he transformation

yi{e,n) =y (2.)) ’
1
§ \ L f1oIL e
yle,x) =y (e,x) =y (#,X) .
1 2
(k) (k)
y {e,X) =y {a,x) =y {(x,M (k=0,rn—-1;-
1 k+1
The solution of equation¢i.l.5/isanintegral function [F].Then ejuaticn

f2.1.4) has a fundamental system v (&,x) , (k=1,3; .Lat i=h

k
utlicon of sguation ¢(21.1.1) be in the form
n
Yik, A} = C {#; yla.n) . ST
k=1 k i

3y using the methodof variationof the parameter{glwe can c-tzin an unknown

function € (#) .Therefors,we obtain a system<f o linsar zgusaticns
i

=1 Xk K

n Y (n=2}

p C (&) v (2, %) = 0 >
k=1 k k

n \ {n-21}

T C (=) ¥ (#,x) = F(a}
k=1 k x J
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