ON THE ASYMPTOTIC SOLUTION OF A CLASS OF LINEAR DIFFERENTIAL **EQUATIONS BY THE RESIDUE METHOD**

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE DEGREE

OF

MASTER OF SCIENCE IN MATHEMATICS

RY

SABAH HAFEZ ABDALLAH

MATHEMATICS DEPARTMENT, UNIVERSITY COLLEGE OF WOMEN, 3379

AIN SHAMS UNIVERSITY

515.354 5.H.

Ain Shams University
University College of Women
Mathematics Departement

M. Sc. Thesis (Mathematics)

Title of the thesis

ON THE ASYMPTOTIC SOLUTION OF A CLASS OF LINEAR DIFFERENTIAL EQUATIONS BY THE RESIDUE METHOD"

Thesis supervisors:

Prof. Dr. Nasr Ali Hassan Professor of mathematics Ain Shams University

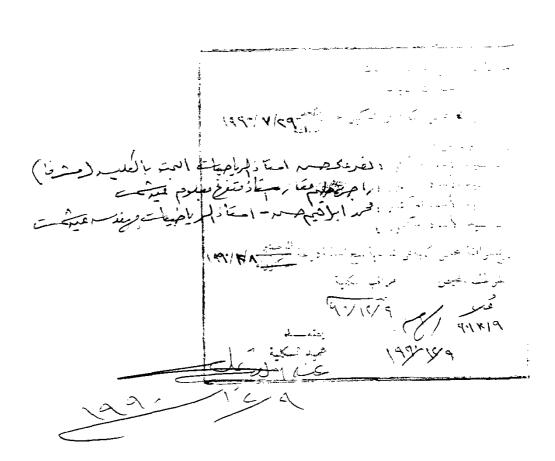
Dr. Adel El Kady Lecturer of Mathematics Ain Shams University

....N SHAMS UNIVERSITY UNIVERSITY COLLEGE OF WOMEN MATHEMATICS DEPARTMENT

COURSES

THE STUDENT HAS PASSED THE FOLLOWING COURSES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE M.Sc. DEGREE

1-	DIFFERENTIAL EQUATIONS	3 HOURS/WEEK
2-	FUNCTIONAL ANALYSIS	3 HOURS/WEEK
3-	NUMERICAL ANALYSIS	3 HOURS/WEEK



ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my supervisor Dr. Adel El Kady, Lecturer of Mathematics, Faculty of Science, Ain Shams University, for suggesting the subject of the thesis, his valuable advice and continuous encouragement.

I would like to express my sincerest thanks to Prof. Dr. Nasr Ali Hassan, Professor of Mathematics, University College of Women, Ain Shams University for his encouragement.

I would like also to thank Prof. Dr. Soraya A. H. Sherif, Head of the department and all the staff members of the department of mathematics for their help and encouragement.

CHA CONTENTS

			Page
	SUMMARY	\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$	iii
	CHAPTER	I : INTRODUCTION AND BASIC DEFINITIONS	
	1.1	Construction of solution for the spectral problem	1
	1.2	Definitions	7
	1.3	The mixed problem with separable variables	8
REF	CHAPTER	II: THE SPECTRAL PROBLEM FOR THE EQUATION	
AR/		WITH TWO PARAMETERS	
	2.1	Asymptotic representation of the fundamental system	n of
		particular solutions for an equation of order four	12
	2.2	Asymptotic representation of the characteristic dete	<u>-</u>
		minant of Green's function for the spectral problem as	nd
		asymptotic representation of its eigen values	. 28
	2.3	Asympototic representation of the derivative of the	
		characteristic determinant with respect to the compl	ex
		parameter	42
	2.4	Asymptotic representation of the derivative of the	
		numerator of Green's function at its poles	51

SUMMARY

SUMMARY

The work presented in this thesis is devoted to the study of the spectral problem of an ordinary differential equation together with the existence and uniqueness of the solution for a mixed problem. The main theoretical tool which is used is the Rasulov method, which can be described in general terms as follows:

Consider the mixed problem of solving a partial differential equation with initial conditions with respect to one of the independent variables and boundary conditions with respect to the other independent variable. This problem can be partitioned into two problems with a complex parameter, one of them is the boundary value problem (which we call the spectral problem) and the other is the Cauchy problem for an ordinary differential equation with respect to the time.

For the spectral problem, we establish, under certain conditions, a formula for the expansion of an arbitrary sufficiently smooth function of a real argument in a series of residues of the solution of that problem.

From the solution of the foregoing problem containing a complex parameter we construct the formal solution of the mixed problem, which can be expressed as the total residue.

The residue method was justified, for the mixed problem not containing the leading time derivative in the boundary conditions.

The thesis contains three chapters:

In the first chapter we illustrated the construction of the solution of the spectral problem. It also presents the essential definitions and theorems, that are of constant use in the sequel.

In chapter two we study the differential equation of order four with the two parameters (λ,s) where λ is a complex parameter, s is a positive integer parameter ($s \neq 0$).

$$\frac{d^4Y}{d^4Y} - As^4 \frac{dY}{dy} - A^4 s^8 Y = h(Y),$$

with the boundary conditions

$$L_1(Y) = Y(0) = 0$$
 $L_2(Y) = Y(0) = 0$

$$L_3(Y) = Y(1) = 0$$
 $L_4(Y) = Y(1) = 0$

which is called the spectral problem.

From this study we shall obtain the asymptotic representations of the following:

The fundamental system of the particular solutions of the characteristic determinant of Green's function and

its eigenvalues, the derivative of the characteristic determinant with respect to the complex parameter λ and the derivative of the numerator of Green's function at its poles.

In chapter III we shall prove the existence and uniqueness of the solution of the mixed problem by using the residue method

CHAPTER I INTRODUCTION AND BASIC DEFINITIONS

CHAPTER []]

"INTRODUCTION AND BASIC DEFINITIONS"

1.1 Construction Of Solution For Spectral Problem .

Let us consider the following linear differential equation

with the boundary conditions

$$L_{\upsilon}(y) = \sum_{k=1}^{n} \begin{bmatrix} \alpha(k-1) & (k-1) \\ \alpha(\lambda) & y & (a,\lambda) + \beta(\lambda) & y & (b,\lambda) \end{bmatrix} = 0, (\upsilon = 1, n), (1,1,2)$$

Where $F(\varkappa)$, $P(\varkappa,\lambda)$, (k=1,n) are continuous functions with respect to k

 $lpha \in [a,b], \alpha$ (λ), β (λ) are polynomials of complex parameter λ and are vk

independent .The functions P (\varkappa,λ) , (k=1,n) are integral functions k

$$i.e \quad P(\varkappa,\lambda) = \sum_{v=0}^{k} P(\varkappa) \lambda$$

$$i.e \quad P(\varkappa,\lambda) = \sum_{v=0}^{k} P(\varkappa) \lambda$$

$$(1.1.3)$$

where p (%) are continuous functions in the interval [a,b]. It's clear $k\upsilon$

that ,the homogenous differential equation

can be transformed to

$$\frac{\mathbf{d} \mathbf{y}}{\mathbf{n}} + \mathbf{p} (\mathbf{z}, \lambda) \mathbf{y} + \dots + \mathbf{p} (\mathbf{z}, \lambda) \mathbf{y} = 0$$

$$\mathbf{d} \mathbf{z} = \mathbf{1}$$

$$\mathbf{n}$$

$$(1.1.5)$$

by the transformation

$$y(\varkappa,\lambda) = y(\varkappa,\lambda)$$

$$1$$

$$y(\varkappa,\lambda) = y(\varkappa,\lambda) = y(\varkappa,\lambda)$$

$$1$$

$$2$$

$$\vdots$$

$$(k) \qquad (k) \qquad (k) \qquad (k) \qquad (k=0, n-1)$$

$$1 \qquad (k=0, n-1)$$

The solution of equation(1.1.5) is an integral function [8]. Then equation (1.1.4) has a fundamental system y (n,λ) , (k=1,n). Let the general solution of equation (1.1.1) be in the form

$$y(\varkappa,\lambda) = \sum_{k=1}^{n} C(\varkappa) y(\varkappa,\lambda) . \qquad (1.1.0)$$

By using the method of variation of the parameter [8] we can obtain an unknown function C (*). Therefore, we obtain a system of n linear equations

$$\sum_{k=1}^{n} C(\kappa) y(\kappa, \lambda) = 0 ,$$

$$\sum_{k=1}^{n} C(\kappa) y(\kappa, \lambda) = 0 ,$$

$$\sum_{k=1}^{n} C(\kappa) y(\kappa, \lambda) = 0 ,$$

$$\vdots ,$$

$$\vdots ,$$

$$\sum_{k=1}^{n} C(\kappa) y(\kappa, \lambda) = 0 ,$$

$$\sum_{k=1}^{n} C(\kappa) y(\kappa, \lambda) = 0 ,$$

$$\sum_{k=1}^{n} C(\kappa) y(\kappa, \lambda) = F(\kappa) .$$