STUDY ON PROCESSING OF SOME BABY FOODS

BY

11

WAGIH AHMED KI-MALKY

B.Sc. Agriculture (Food Science)
Ain-Shams University
(1970)

THES IS

SURMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE

Degree

Of

Master Of Science

In

Food Technology

6569.

649.3 W. A

Faculty Of Agriculture
Ain-Shame University

1974

APPROVAL SHEET

NAME : Wagih Ahmed El-Malky

TITLE : Study on Processing of some baby foods

This Thesis has been approved by:

Dr. Gohra Foda

ur. A B Shaka

Ir. & Warel

Date: 19/12/ 1974

PRESENTATION

This thesis is dedicated to the greatest woman, to my dear mother.

--oo0oo--

ACKNOJLEDGENENT

I am very much indebted to prof. Dr. Y.H. Foda,
Professor of Food Sci. Dept., Faculty Of Agriculture.

Ain Shams University, for his continuous supervision
and valuable help as well as his constructive criticism
throughout the discussion of this thesis.

I am very much indebted to prof. Dr. A.G. El-Warraky, Professor Of Food Sci., Faculty Of Agriculture Ein-Shams University, for his advise in revising and presenting this thesis.


Sincere appreciations are expressed to Dr., Y.M. Hassan, Assistant Professor Of Food Sci., for his help in planning that work.

I would like to thank Dr. m.A. Abd-Alla Lecturer Of Food Sci., Faculty Of Agriculture, Ein Shams Univ. who offered a lot of help in the expermintal part especially the chemical analysis.

Much appreciations are also due to Dr. N.R. Abd-El Rahman, Lecture of Food Sci., for supervising this work. I would like to thank Prof., Dr. E.E. Galal the General Director Of Drug Research & Control Center and for Dr. A. Rofael General Director Of Control and Pharmaceutical analysis Institute at the same center for their valuable help and offering a lot of facilities in the course of this work.

I would like to extend my thanks to Prof. Dr. E.Abdo, General Director of the Institute Of Mutrition and to Dr. W.moussa at the same Institute for their kind help and allowing the utilization of the animal house of the nutritional experiments in this thesis.

I would like to thank also mr. M.M. mansour and all Members Of Department Of medicinal Diets and Dept. Of Physics at Drug Research and Control Center.

$\texttt{C} \hspace{0.1cm} \texttt{3} \hspace{0.1cm} \texttt{N} \hspace{0.1cm} \texttt{1} \hspace{0.1cm} \textbf{E} \hspace{0.1cm} \texttt{3} \hspace{0.1cm} \textbf{T} \hspace{0.1cm} \texttt{3}$

					Pago.
I.	INTROD	UC PI	δÑ		1
II.	SCOPE		_		11
II.	REVIEW	OF		ra pure	
	A)			entution of cereals	12
	B)	Bab	y fo	od mixtures	16
	C)	Bio	logi	cal Pyalustion of protein quality	
		1.	Pro	tern efficiency ratio	24
		2.	Ne t	protein utilization	28
		3.	One	aical score.	31
IV.		3 222	====	~===533	1 /1
	4)		eria		34
	В)	438	1761	cal methods.	
		ı.	Che	mical methods	36
			٤)	General analysis (Protein, Fat, Fibers, Ash, Moisture, Carbohydrates, Calories, Calcium and Iron).	
			b)	Quantitative amino acids	40
		2.	Bio	logical analysis.	
			a)	Protein efficiency ratio	44
			p)	Net protein utilization	52
			c)	Chemical score	59

•••••

			Page
٧.		S AND DISCUSCION	
	A)	Chemical composition of seeds	
		1. Legume seeds	60
		2. Cereal seeds	71
	B)	Chemical composition of different baby foods.	7 8
		1. Local and imported commercial baby foods.	
		2. Formulated baby foods.	37
	C)	Biological evaluation of baby foods.	
		1. Protein efficiency ratio	96
		2. Net protein utilization	102
		3. Chemical score	105
VI.	SAMMAR	-	106
II.	REFERE		112
II.	APPEND		125
IX.	·	RY IN ARABIC	

I - INTRODUCTION

suffering from malnutrition as a result of poverty, lack of suitable food, incorrect knowledge in nutrition and superstition. It is during the rapidly growing period of infancy and early childhood that malnutrition is most marked resulting in a high morbidity and mortality and probably leaving physical and psychological sears in later life in those who survive.

The global supplies of animal protein are grossly inadequate. Stereotyped protein foods for infant feeding such as animal milk are going to become even more difficult to obtain despite efforts to increase dairying and stock raising. It is, therefore, of fundamental importance to find suitable foods or mixtures of foods to substitute milk in the protein — difficient phase of infancy and early childhood.

Therefore, the FAO/WHO/UNICEF Brotein Advisory Group at its meeting in Geneva (March 1970) has defined certain characteristics which should be fulfilled in protein-rich food mixtures in order to be of value as supplementary foods for infants and young children. As protein is the critical need in the feeding of young children it is important that in the development of wearing regarding the protein requirements of infants and children and the factors influencing them, it was suggested that the concentration of protein should be around 20% if the net protein utilization has a value of 65%. For protein of high quality the concentration could be lowered.

on the other hand the formulated weaning food should be able to provide at least 300 - 400 ealories per 100 gram of mixture. It is essential that children be encouraged to consume at least 100 gram of food and that mothers be educated not to cut down quantity of the usual food given to children foods, special attention should be paid to the quality and amount of protein in the product. Concerning fats, it is stated by the Protein Advisory Group (PAG) that the present knowledge does not permit fixing a diatary allowance of fat with certaintly. Even so, it will be a great advantage to add to the formulas as much fat as technologically feasible without effecting the keeping quality of the food.

It is essential to fortify formulated protein foods with vitamins and minerals to satisfy the recommended allowances. It is desirable to ensure that the food has adequate amount of vitamin 'A', riboflavin, mincin, folic acid, accorbic acid, vitamin D, calcium and iron, while it was found difficult to suggest the levels of these nutrients (vitamins and minerals) as well as of others, like iodine, that may be added to these foods. It was emphasized that fortification with vitamins and minerals should take into account the local needs and the prevalent nutrition problem of the population. And laterly the formulated foods should be such that it could be reconstituted easily and quickly into a gruel or porridge.

The recommended daily dietary allawances for infants and young children are shown in tables (1 & 2).

Table (3) shows some of protein - rich infant foods in developed countries made by the joint FAO/WHO/UNICEF

Protein-Rich Food Program. All these mixtures have the principle of formulation being a cereal has been supplemented by one or more of the available protein sources which differe according to the local conditions, skim milk

powder, different legumes, say flour, cotton seed flour and fish protein concenurates, all these supplements have been used in the different mixtures litsted.

allowances
diotary
daily
Recommended
ට
Table

				I				Fat Soluble Vitamins	ole ning	[28	ater	Water soluble	9	илнета18	rals
								⋖	Q	Ö	e d	B 2	Ni circ	ن ن	Fe.
	Age	Weigh Kg. 1t		t Cm. inc.		Calories K. cal.	Protein gm.	I.U.	I.O.	a B	မ် ရ	.9	9 8	្ងួ	မှာ 3
	- 1 9	4	6	55	22	120 x Kg. of body wt.	(1) (1)	1500	400	35	0.2	† °0	5	4 ~0	9
Infant	410 410	7	15	63	25	110 x Kg. of body wt.	2. OKKg. of body wt.	1500	£00 1	35	7	0.5	7	ક્રું સ	01
	1 Z	0	80	72	28	100 x Kg. of body wt.	1.8xKg. of body	1500 400	00#	35	0.5	0.6	œ	900	15
\$ 5 m	1-2	12	Ж	81	32	0011	25	2000 400	400	3	9.0	0.6	æ	35	15
OUT TOTAL	2-3	14	31	93	36	1250	25	2000 400	400	Q	٥٠٥ د	6.7	æ	80c	15
			ļ	,			! ! !		1	1					

Church F. and Church N. (1969).

I.U. Vitamin A acetate = 0.344 mog.

Pable (2) The average minimal daily essential smino scide requirements of infanta

Amino acids	mg/Kg.
Erst i din e	32
Isoleucine	90
Leucine	150
Lysine	85
Mothionine	65
Phenyl alanine	90
Threonine	60
Tryptophan	22
Valine	93

Fleck and Munves (1962)

Table (3) A List of Protein food mixtures

Product	Country	Composition	Pretein content
In c aparina	Guatemala	Maize, Conton seed flour, vitamin A, lysine, cal-cium curbonate.	27.5
	C olo mbia	The same plus defatted soy flour.	27.5
	Mixico	The same plus defatted soy flour and without cotton seed flour	27. 5
Fortifl e x	Brazil	Maize, defatted soy	30. 0
Pronutr.o	South Africa	Maize, skim milk powder, peanut, soya, fish pro- tein concentrate, yeast, wheat germ, vitamin A, B ₁ , B ₂ , miacin, iodized salt.	22.0