Current Status of Lulmonary Artery Banding (LAB) in Staged Management Of Congenital Heart Diseases (CHD)

Thesis Submitted for partial fulfillment of master degree in General Surgery

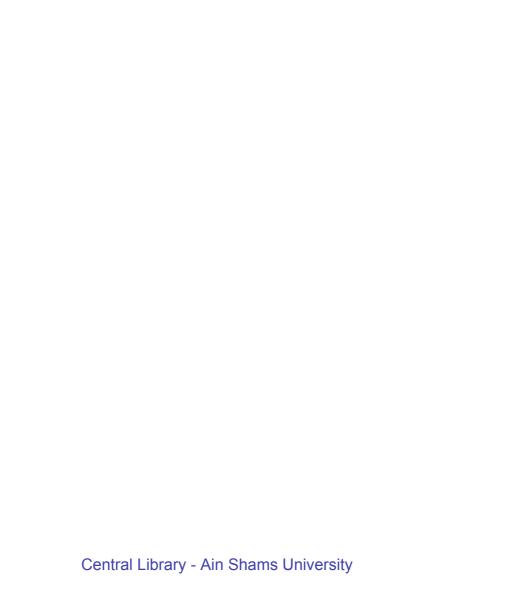
Submitted By Al-Waleed Mohamed Ibrahim, M.B.B.Ch

Under Supervision of

Ezz El-Din A. Mostafa, M.D.

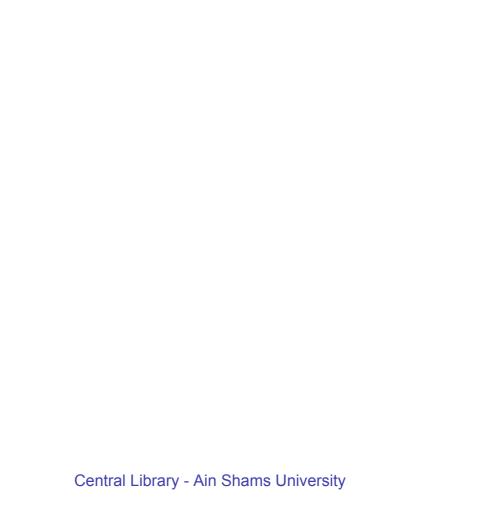
Professor of Thoracic & Cardiovascular Surgery
Ain Shams University

Gamal S. Sayed, M.D.


Associate Professor of Thoracic & Cardiovascular Surgery
Ain Shams University

Mostafa A. Abd El-Gawad, M.D.

Lecturer of Thoracic & Cardiovascular Surgery Ain Shams University


Faculty of Medicine - Ain Shams University

1998

بسم الله الرحيم الله الرحيم "قالوا سبحانك لاعلم لنا إلا ما علمتنا إنك أنت العليم الحكيم" القرة آمة ٢٢

ACKNOWLEDGMENT

Draise Be To Allah Without the Help of Allah, This Work Would Not Have Been Lossible

Words stand short when they come to express my gratefulness to my supervisors.

I would like to express my deepest thanks and profound gratitude to Prof. Ezz El-Din A. Mostafa professor of thoracic and cardiovascular surgery, as it was such a great honor to work under his kind guidance. I would like also to thank him for honest help, constant advice, keen interest and guidance throughout the performance of this work.

I am also really grateful to express my deep gratitude and appreciation to Associate Prof. Gamal S. Sayed, associate professor of thoracic and cardiovascular surgery for his constant advice and continuous support, thanks for him for sharing his expertise, valuable time and helpful suggestions.

No words can express my gratitude and appreciation to Dr. Mostafa A. Abd El-Gawad, who saved no effort in helping and guiding me, without his help and guidance this work could not be completed.

I would not forget to thank everyone who helped me or gave me his advice until this work is completed.

ABSTRACT

Objectives: This study is a retrospective review for the current status of PA banding at Ain Shams University Hospital through the period of June 1993 to June 1998.

Patients and Methods: During this period PA banding was performed in 57 patients having different types of congenital heart diseases with an average age of 8.8 months (range 2-48) and average weight of 6.3 kg (3.5-14 kg).

Diagnosis was: ventricular septal defect (VSD) in 24 patients, VSD + ASD in 11 patients, 7 patients had complete atrioventricular canal, 6 patients had double outlet right ventricle (DORV) with large VSD, 2 pateints had tricuspid atresia with TGA and large VSD, 1 patient had truncus arteriosus, one pateint had single ventricle, and one patient had TGA /VSD + PDA, 2 pateints had double inlet-double outlet right ventricle, and 2 patients had double inlet left ventricle with large VSD. Other procedures performed during the same time as PAB were, ligation of PDA in two patients and interatrial septectomy in one patient with TGA.

PA banding was performed according to Albus and Trusler formula in 56 patients, with one patient (truncus arteriosus) received bilateral branch pulmonary artery banding.

Results: PA banding was totally effective in decreasing PA pressure from a mean of 82.2 mmHg before banding to a mean of 39.9 mmHg after banding, in the same time there

was an increase in the systolic ABP from 93.8 mmHg to 100 mmHg. Early death occurred in 9 patients (15.7%) and late death (after one month) occurred in three patients (5.2%). Nine patients had PA debanding and definitive correction of their cardiac anomalies. There is 25 patients (43.8%) are waiting for definitive operation, one patient had pulmonary hypertension precluding definitive repair, and their were 10 patients lost to follow up (17.5%). The average age at debanding was 24 months and the average weight was 9.4 Kg. Mean PAP at debanding was 26 mmHg and the average gradient across the band was 50mmHg. Out of the 9 debanded pateints there was 22% mortality (two patients).

Conclusion: PA banding is a useful palliative procedure for a diverse group of patients with congenital cardiac anomalies and unrestricted pulmonary blood flow. PA banding is still beneficial in multiple, complicated, or medically compromised VSD, as well as in very small neonates with atrioventricular septal defects, and truncus arteriosus, and subsets of double outlet right ventricle and tricuspid atresia with high pulmonary blood flow not amenable to early complete repair. PAB in functional single ventricle allows safer delayed definitive repair. TGA + VSD and DORV + subpulmonic VSD are now repaired primarily (arterial switch) with acceptable results.

(Keyword: Pulmonary artery banding)

list of abbreviations

2-D Tow dimensional echocardiography

ASD atrial septal defect

ASO Arterial switch operation

AVSD Atrioventricular septal defect

B-T. Shunt Blalock - Taussig shunt

CAVC Complete atrioventricular canal

CHD Congenital heart disease or defect

CHF Congestive heart failure

CW Doppler Continuous wave Doppler

DILV Double inlet left ventricle

DIRV Double inlet right ventricle

DKS Damus -Kaye -Stansel procedure

DORV Double outlet right ventricle

HLHS Hypoplastic left heart syndrome

IAA Interrupted aortic arch

LV Left ventricle

LVOT Left ventricular outflow tract

List of Abbreviations

MPA Main pulmonary artery

MRI Magnetic resonance imaging

PA Pulmonary artery

PAB Pulmonary artery banding

PDA Patent ductus arteriosus

PTFE Poly-tetra-flouro-ethylene

PVR Pulmonary vascular resistance

Qp Pulmonary blood flow

Qs Systemic blood flow

RV Right ventricle

RVOT Right ventricular outflow tract

SAS Subaortic stenosis

SV Single ventricle

TA Tricuspid atresia

TAPVC Total anomalous pulmonary venous connection

TGA Transposition of great arteries

TR Tricuspid regurge

Tr Art Truncus arteriosus

UVH Univentricular heart

VSD Ventricular septal defect

LIST OF TABLES

Table No. & Comment	
Table No. & Comment	Page
Table 1: Experience of international centers with PAB and	
	00
the mortality encountered	88
Table 2: Sex ,Age, Weight, and diagnosis of the patients who	
underwent PAB through the period of 1993-1998	120
——————————————————————————————————————]
Table 3: pre-operative clinical condition and invetigations	
	122
before PA banding	
Table 4: Intra-operative prebanding parameters	
13000 1. Initia operative prepanding parameters	123
Table 5:Intra-operative postbanding parameters	104
	124
Table 6: Relation of band circumference to body weight and	-
diagnosis and Albus formula	126
and Aidus Iormula	
Table 7:Patients banded according to the formula and their	
results	129
results	140
Table 8 : Intra apprative annuli di	
Table 8 :Intra-operative complications related to band	100
tightness and position	130
T-11 O T 1	
Table 9: Early post-operative data and complications	131
Table 10 : Follow up of matients at	
Table 10 :Follow up of patients who underwent Pa banding	132
Table 11: Early and late mortality by diagnosis ,time, and	
	132
cause of death	102

List of Tables

Table No. & Comment	Page
Table 12: The clinical and cardiac condition of patients who are coming for follow up	133
Table 13: Data of patients who underwent debanding and total definitive correction	135
Table 14: Results of PAB in palliative and staged management of VSD	145
Table 15: Results of PAB in palliative and staged management of interrupted aortic arch (IAA)	147
Table 16: Results of PAB in palliative and staged management of complete AV canal	149
Table 17: Results of PAB in palliative and staged management of truncus arteriosus	150
Table 18: Results of PAB in palliative and staged management of single ventricle	151
Table 19: Results of PAB in palliative and staged management of tricuspid atresia	152
Table 20: Results of PAB in palliative and staged management of transposition of great arteries	154

LIST OF FIGURES

Figure No. & Comment	Paga
	Page
Fig. 1: Heath Edwards classification of pulmonary vascular	
changes	6
Fig. 2.3.4.5. Perland	
Fig. 2,3,4,5: Pulmonary vascular changes in lung biopsy	2.12
specimens and its reversibility after PA banding	9, 10
Fig, 6: Anatomical variants and types of interrupted aortic	 -
arch	19
Fig. 7 · Province DA 4 · 1	
Fig. 7: Proximal PA to descending aorta conduit in	20
management of HLHS	29
Fig. 8: Angiography describing PA banding and stenting of	
the arterial duct in management of HLHS.	29
Fig. 9,10: Dilated gigantic right pulmonary artery in	
absent pulmonary valve syndrome	31
Fig. 11: Arrested growth of the right pulmonary artery	
	32
after PAB in absent pulmonary valve syndrome	54
Fig. 12 a: air trapping and pulmonary hyperinflation in	
absent pulmonary valve syndrome.	33
Fig. 12 b: Chest X-ray after PAB showing normal lung	
fields.	33

viii

Review of Literature

Figure No. & Comment	Page
Fig. 13: Effect of PAB on subaortic obstruction in patients of single ventricle	38
Fig. 14: Effect of PAB on subaortic obstruction in patients of tricuspid atresia wirth TGA	41
FIG. 15A: PAB and partial Senning	47
FIG. 15B : PAB and Blalock-Taussig shunt	47
Fig.16: Chest X-ray: regression of cardiomegaly after PAB in treatment of RV failure and TR	55
Fig. 17: Intra-operative observation made by TEE after PAB placement in management of RV failure after Mustard or Senning operation	57
Fig. 18: Effect of PAB on growth of new aortic anastomosis and root after ASO operation	59
Fig. 19: Anterolateral thoracotomy for PA banding	61
Fig. 20: Surgical steps of PA banding	62
Fig. 21, 22, 23, 24: Surgical steps of PA banding	65, 66
Fig.25: Extrathoracically adjustable pulmonary trunk band (Muraoka technique)	70
Fig.26: Percutaneosly adjustable device for PA banding (Park technique)	71
Fig. 27a,b: Selective right ventriculograms before and after application of percutaneosly adjustable PA band	72

iж