90.416

THESIS ON STUDIES ON SOME METAL-BILIRUBIN COMPLEXES

Presented to
Faculty of Science
Ain Shams University
Cairo

By
MONA MOUNIR MOAWAD
M . Sq.

Submitted for the Award
of the Degree of
DOCTOR OF PHILOSOPHY
in
Chemistry

1986

STUDIES ON SOME METAL-BILIRUBIN COMPLEXES

Thesis Advisors	Approved
Prof. Dr. G.R. Choppin	• • • • • • • • • • • • • • • • • • • •
Prof. Dr. N.E. Milad	
Prof. Dr. E.N. Bizkalla	

Prof Dr. N.E. Milad
Chairman, Dept. of Chemistry

Faculty of Science
Ain Shams University

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to Prof.

Dr. G.R. Choppin Prof. of Inorganic Chemistry, Faculty

of Science, Flourida State University and Prof. Dr. E.N.

Rizkalla Prof. of Inorganic Chemistry, Faculty of Science,

Ain Shams University for suggesting the problem devising

the scheme of the work, for their invaliable suggestions
and their critical remarks.

I am also greatly indebted to Prof. Dr. N.E. Milad Prof. of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University for his contineous help, advice and for his generosity. He offered me a lot of his valuable time.

I would like to take this opportunity to thank

Prof. Dr. A.M. Khalil Prof. of Physical Chemistry and

A.A.Zahran, Lecturer of Physical Chemistry, Faculty of

Science Ain Shams University for their help in carrying

out surface area measurements, and Dr. W.G. Hanna

Lecturer of Inorganic Chemistry & Faculty of Science

Ain Shams University for his help in carrying out spectro
photometric measurements.

- i -

CONTENTES

		Page
	CHAPTER I	
INTRODUCT	MOIT, MOIT	1
I-1-	Structure and Nomenclature	1
I-2-	Stability	4
I-3-	Oxidation	5
1-4-	Isomerization	5
I-5-	Storage stability	8
1-6-	Solubility	9
	I-6-A- Solubility in aqueous solution	ns 9
	I-6-B- Solubility in organic solvent	s 11
I-7-	Methods of Determination	11
	I-7-A- Direct spectrophotometry	11
	I-7-B- Oxidation Methods	12
	I-7-C- Fluoresence	12
	I-7-D- Electrochemical methods	13
	I-7-E- Diazo coupling method	13
I-8-	Bilirubin - Metal complex Compounds	16
I-9-	Pathogenesis of Calcium Bilirubinate	
	Gallstone	···· Iò
Aim o	of The Work	• • • •
	CHAPTER II	
EXPERIMEN	TAL.	
II-1-	Respents and Solutions	25

		Page
	II-1-A- Organic Phosphonate	25
	II-1-B- Sodium phosphate and EDTA-2Na	26
	II-1-C Solvents	26
II-2-	Bilirubinates	26
	II-2-A- Neutral calcium bilirubinate	
	(N-CaBil.)	25
	II-2-B- Calcium acid bilirubinate (A-CaBil.)	27
	II-2-C- Magnesium bilirubinate	27
	II-2-D- Gallstones	27
II-3-	C, H, N Analysis	28
II-4-	Metal Analysis	28
	II-4-A- Determination of Calcium in calc-	
	ium bilirubinate complex and Mag-	
	: nesium in magnesium bilirubinate	
	complex	28
II-5-	X-ray Diffraction Analysis	29
II-6-	Infrared Spectra	29
II-7-	Nitrogen Adsorption Measurements	30
II-8-	Kinetic Measurements	31
	II-8-A- Conductometric measurements	31
	II-8-A Equivalent conductivity of	
	bilirubin at infinite dilution	32
	II-8-3- Spectrophotometric measurements	35
	II-8-B-i- Effect of additives on the	
	solubility of bilirubin and	
	its salts	35
II-9-	Kinetics of Formation	27

	Page
CHUPTER III	
RESULTS and DISCUSSION	38
III-1- Elemental and X-ray Analyses	38
III-2- I.R Spectra	41
III-3- Conductometric Measurements	44
III-3-A- Effect of weight on the	
rate of dissolution of bilirubi-	
nate salts	45
III-3-A-i- Calcium acid bilirubinate	45
III-3-A-ii-Neutral Calcium bilirubinate	47
III-4- Effect of Temperature	78
III-4-A- Calcium acid bilirubinate	78
III-4-B- Neutual calcium bilirubirate	79
III-5- Magnesium Bilirubinate	84
III-6- The effect of Surface Area	89
III-7- Effect of Additives	93
III-8- Spectrophotometric Study	95
III-8-A- Observance with Beer's law	95
III-8-B- Effect of EDTA.4Na on the solu-	
bility of Bil., A-CaBil., N-CaBil.,	
and MgBil	96
III-8-C- Effect of ENTMP on the solubility	
of Bil., A-CaBil, N-CaBil and MgBil.	98

7

- iv -

	Page
III-8-D- Effect of trisoduim phosphate on	
the solubility of Bil., A-CaBil.,	
A-CaBil., N-CaBil, and MgBil	99
III-8-E- Effect of additives on the galls-	
tone	100
III-8-E-i- Effect of EDTA, 4Na, ENTMP and	
Na ₃ PO ₄ 12H ₂ O	100
III-8-E-ii Effect of mixed additives on the	
solubility of gallstone	102
III-9- Effect of Solvent	112
III-10-Kinetics of Formation	117
III-10-A- Effect of pH	117
III-10-B- Effect of metal ion concentration	118
III-10-C- Effect of additives	119
SUMMARY	126
REFERENCES	129
ARABIC SUMARY	

VITA.

- Mona Mounir Moawad was born in Cairo 3/12/1956. In 1974 she joined the Faculty of Science, Ain Shams University, and received the degree of Bachelor of Science, in 1978.
- In 1978 she was appointed as a demonstrator at Faculty of Science, Ain Shams University, where she carried out research work in Inorganic Chemistry under the supervision of prof. Dr. N.E. Milad and Assoc. Prof. Dr. E.N.Rizkalla and recevied the M.Sc. degree in 1981
- In the same year she was registered for the Ph.D. degree in Inorganic Chemistry under the supervision of prof. Dr. G.R. Choppin, Prof. Dr. N.E. Milad and Prof. Dr. E.N.Rizkalla.

Abbreviations

ريان د محالت الا المحالت

- 1- Bilirubin : :Bil.
- 2- Calcium acid bilirubinate: A- CaBil.
- 3- Neutral calcium bilirubinate: N-CaBil.
- 4- Magnesium bilirubinate : MgBil.
- 5- ethylendiamine N, N, N', N', tetra(methylene phosphonic) acid: ENTMP
- 6- ethylendiamine tetracetic acid disodium salt: EDTA.2Na
- 7- Sodium salt of urosdemxychloic acid: URSO
- 8- bovine serum albumin : BSA.

INTRODUCTION

CHAPTER I

INTRODUCTION

I.1 Structure and Nomenclature

True bile pigments, the bilirubinoinds, are linear tetrapyrroles. They are derivatives of the porphyrins which are cyclic tetrapyrroles.

Porphyrins are derived from porphin, they consist of four pyrrole rings attached to each other by four methine bridges; (-CH=). The four rings are designated I to IV and the bridges \propto , β , γ and γ . In positions 1 to 8 the H-atoms can be replaced by various radicals. The more common substituents are the methyl (M), vinyl (V), ethyl (E), propionic (-CH₂-CH₂-COOH, P) and acetic (-CH₂-COOH, A).

By substituting the hydrogen in porphin with four methyl and two propionic acid (-CH₂-CH₂-COOH) and two vinyl radicals, di-carboxylic prophyrins are obtained. These porphyrins, containing three different substituents in the porphyrin nucleus, exist in 15 isomeric forms, but only the form known as IX exists when the porphyrin ring is opened by cleavage of a methine bridge, linear tetrapyrroles or bilirubinoids are obtained. Depending on the number of

symmetry planes present in its molecule, a porphyrin can yield two, three or four different linear tetrapyrroles. Thus, bilirubin is called protobilirubin IX- ∞ because it is formed from protoporphyrin IX by opening at the ∞ -bridge, as shown in Figure (1). If the cleavage take place at the B, X and S bridges, the structures shown in figure (2) are obtained.

Fig. (1) Formation of bilirubnin IX-X via catabolism
of the protoporphyrin IX moiety of hemoglobin.

Protoporphyrin IX

Fig. (2) Structures of bilirubin IX-B , IX- δ and IX- δ these isomers result from the cleavage of the B , δ or δ bridges of protoporphyrin IX.

Bilirubin can exist in several tautomeric forms, two of which are the bis-lactim(I) and bis-lactam (II), structures $^{(1)}$. Because of its chemical characteristics it was thought that Bilexisted mainly in the bis-lactam form $^{(2)}$.

Bilirubin exists in solution as a hydrogen-bound monolactam-mono lactim structure (III).

$$H_3$$
CH2=CH $_2$ CH3

 H_3 CH=CH $_2$ CH3

 H_3 CH=CH $_2$ COOH

 H_3 CH=CH $_2$ COOH

The circular configuration and nucleophilic nitrogen now present are both conducive to complex formation, analogous to the metalloporphyrins (3), which in the absence of complexing metal ions may exist partially in solution in the hydrogen bound form (III).

I-2. Stability

Unconjugated bilirubin (bilirubin IX) is a very unstable compound subject to photooxidation and isomerization. These phenomena are the basis for phototherapy of newborns with serious jaundice, but they are also primary problems in the accurate measurement of the concentration of unconjugated bilirubin.