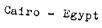
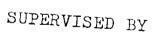
Y XXXX

PERFORMANCE OF LIGHTNING ARRESTERS UNDER POLLUTED CONDITIONS


A Thesis Submitted

BY

FATHY MOHAMED IBRAHIM TAHOUN B.Sc. Electrical Engineering, June 1976


TO

The Electrical Engineering Department
Faculty of Engineering
Ain-Shams University

FOR

The M.Sc. Degree In ELECTRICAL ENGINEERING

Prof. Dr. S. EL-DEBEIKY

Dr. M. SWEDAN

Dr. M.M. AWAD

1987

لجنة فحص ومناقشة الرسالة

C Sw

الاستاذ الدكتور/ سليمان محمد الدبيكس استاذ بقسم القوى والآلات الكهربيسسة كلية الهندسة ــ جامعة عين شمسسس و هذار روان

الاستاذ الدكتور/ عد الرزاق ابراهيم نصير استاذ بقسم القوى والالات الكهرسيسة كلية الهندسة بجامعة عيسن شمسس

السيد الدكتور / محسد محسد عسوض مديسر هيئة كهرساء مصسسر للدراسيات والبحسوث والتطويسسسر

السيد الدكتور / أحمد على السركسى رئيس قطاع الشبكات والتحكسم شركة هندسة نظم القوى الكهرمائية وزارة الكهرما والطاقسة

ACKNOWLEDGEMENT

It is through "Allah" grace that the present investigation was fulfilled. It was carried out by the auther with the help of the concerned persons to whom the auther is indebted.

The author is deeply thankful to Professor Dr. S. El Debeiky, Professor in Electrical power and high voltage engineering, Ain Shams University, for his kind supervision, valuable guidance and continuous help and encouragement.

The author expresses his gratitude to Dr. M. Swedan, Vice chairman, Egyptian Electricity Authority (E.E.A.) for his valuable advice.

The author is heartfully thankful to Dr. M.M. Awad, E.E.A. Managing Director for Studies, Research and Development Department, for keen interest, useful suggestions and plans and for unfailing help.

The author is also indebted to Dr. E. El Sharkawi, Chairman of E.E.A., Engineer H. Said, General Director of Research and Testing, Dr. O. El-Gendy, Director of Pyramids Extra High Voltage Research Centre and the Staff of the P.H.V.R.C. for their continuous support.

TABLE OF CONTENTS

SUMMARY	Page viii
CHAPTER 1 INTRODUCTION.	1
1.1 General	1
1.2 Surges and Overvoltage in Networks	1
1.3 Surge Arresters as a Protection Against	T
Overvoltages	2
1.4 Cantamination Problem of Surge Arresters .	3
CHAPTER 2 PREVIOUS WORK AND LITERATURE REVIEW.	6
2.1 General	-
2.2 Network Overvoltages and Surges	6
2.3 Insulation Coordination of Electrical	6
Networks	~ ~
2.4 Review of Results of Previous Studies	10 13
CHAPTER 3 TESTING CIRCUITS AND EXPERIMENTAL	
TECHNIQUES.	2.4
3.1 General	34
3.2 Test Objects	34
	35
3.4 Surface I.	36
3.4 Surface Layer Conductivity Measurements	4 0
3.5 Humidity Chamber	43

		Page
3.6	The Fog Chamber	45
	3.6.1 Testing by clean fog method	45
3.7	Methods of Coating the Testing Arresters	47
	with Contaminants	46
3.8	Arrangemenent of Arrester and Test Procedure	47
3.9	Impulse Voltage Tests	53
CHAPTER 4	PERFORMANCE OF CONVENTIONAL GAPPED AND	
	GAPLESS (ZINC OXIDE) ARRESTERS UNDER	
	POLLUTED CONDITIONS.	56
4.1	General	56
4.2	Testing of Conventional Gapped Arresters	70
	for Distribution Class	57
	4.2.1 Testing under clean and dry conditions	57
	4.2.2 Testing under artificial pollution .	59
	4.2.2.1 Test results at 5 u.s layer	
	conductivity	60
	4.2.2.2 Test results at 10 u.s layer	
	conductivity	63
	4.2.2.3 Test results at 20 u.s layer	
	conductivity	66
	4.2.2.4 Test results at 25 u.s layer	
	conductivity	59
	4.2.2.5 Test results at 30 u.s layer	
	conductivity	'2

	Page
4.2.2.6 Test results at 35 u.s layer	
conductivity	75
4.2.2.7 Test results at 40 u.s layer	
conductivity	78
4.2.2.8 Test results at 45 u.s layer	
conductivity	81
4.2.3 Sparkover/Flashover characteristics	
of the 12 kV distribution conventional	
gapped arrester under pollution	
conditions	84
4.3 Testing of Conventional Gapped Arrester	
with Grading System "Station Class"	87
4.3.1 Testing under clean and dry conditions	87
4.3.2 Testing under artificial pollution .	88
4.3.2.1 Test results at 5 u.s layer	
conductivity	88
4.3.2.2 Test results at 10 u.s layer	
conductivity	91
4.3.2.3 Test results at 15 u.s layer	
conductivity	9 4
4.3.2.4 Test results at 20 u.s layer	
conductivity	97
4.3.2.5 Test results at 25 u.s layer	
conductivity 10	Ю

I	age
4.3.2.6 Test results at 30 u.s layer	
conductivity	103
4.3.2.7 Test results at 35 u.s layer	עטב
conductivity	106
4.3.2.8 Test results at 40 u.s layer	
conductivity	109
4.3.2.9 Test results at 45 u.s layer	
conductivity	112
4.3.3 Sparkover/Flashover characteristics	
of the 60 kV station-class conventional	
gapped arrester under pollution	
conditions	
4.4 Testing of Metal Oxide Arresters (Gapless	15
Zinc Oxide Arreston 60 LW	
Zinc Oxide Arresters 60 kV)	18
4.4.1 Testing under clean and dry conditions 1:	18
4.4.2 Testing under artificial pollution	
condutions 13	L9
4.4.2.1 Test results at 5 u.s layer	
conductivity 11	q
4.4.2.2 Test results at 10 u.s layer	
conductivity 12	2
4.4.2.3 Test results at 15 u.s layer	_
conductivity 12	5

		Page
	4.4.2.4 Test results at 20 u.s layer	
	conductivity	128
	4.4.2.5 Test results at 25 u.s layer	
	conductivity	131
	4.4.2.6 Test results at 30 u.s layer	
	conductivity	134
	4.4.2.7 Test results at 35 u.s layer	
	conductivity	137
	4.4.2.8 Test results at 40 u.s layer	
	conductivity	140
	4.4.2.9 Test results at 45 u.s layer	
	conductivity	143
	4.4.3 Discharge/Flashover characteristics	
	of the 60 kV station-class Z_{n}^{0}	
	gapless arrester under pollution	
	conditions	147
4.5	Testing of Equivalent Insulators Under the	
	Same Pollution Conditions	150
4.6	Analysis of Results and Discussion	154
	4.6.1 Performance of surge arresters as	
	compared with each other	155
	4.6.1.1 Gapped arresters for	
	distribution class	155

	Page
4.6.1.2 Conventional gapped and	
gapless ZnO arresters for	
station class (60 kV)	159
4.6.2 Performance of arresters compared to	
equivalent insulators	169
4.6.3 Compared characteristics of arrester	
types under impulse voltage	174
CHAPTER 5 GENERAL CONCLUSIONS AND SUGGESTIONS FOR	
FURTHER INVESTIGATIONS.	181
REFERENCES	189
ARABIC SUMMARY	

viii

SUMMARY

Sugre arresters being main devices used to protect high voltage networks against undesirable overvoltages, investigation tests were carried out in the present work on the two different types of arresters commonly used, the conventional gapped and gapless ones. These devices are mostly installed outdoor and subjected to weather conditions, therefore, their performance under polluted conditions is of prime importance.

As many investigators have performed studies to approach this problem, the present work is devoted to study the effects of heavy pollution on these two types. The results are compared for the two types in order to select the most suitable arrester type in a specific polluted area.

The tests were performed using power frequency a.c 50 c/s voltage and solid layer surface conductivity. The prencentage decrease of sparkover or discharge voltage under different solid layer-surface conductivities were determined.

The present work includes quantitative figures for the sparkover, discharge or flashover voltages for both

types of arresters. Also the answers for the various questions about the effects of polluted arresters are presented.

Hence, the thesis comprises five chapters. The first chapter is an introduction to the problem of the performance of lightning arresters under polluted conditions and the reflections of this problem on the performance of electrical networks.

Meanwhile, Chapter two presents a general review of literature and previous work done by others.

Futher, Chapter three presents a description of the experimental arrangements and test techniques, including investigated testing and measuring circuits.

Chapter four presents the obtained results, analyses of results, including performance curves for the various lightning arrester types of various voltages under various intensities of pollution layers up to very heavy pollution, as detailed in the text.

Finally, Chapter five presents the main conclusions and recommendations for improving the performance of lightning arresters.

CHAPTER (1)

INTRODUCTION

1.1 General

Surges and overvoltages are considered a main problem in electrical networks particulary for extra high voltage. For more efficient and economical operation and design of a network, the origin and properties of overvoltages which can occur in the network must be studied.

Protection of the network aginst overvoltages by using some means to reduce and limit the overvoltages is due. The surge (lightning) arresters are the most common devices used in this respect.

Contamination considerably influences the performance of surge arresters. The arrester may be even damaged due to pollution, causing many troubles in the electrical network.

1.2 Surges and Overvoltages in Networks

Surges and overvoltages in networks are caused by: lightning (extenal), switching (internal) and temporary overvoltages.

- Lightning overvoltages which are caused by lightning strokes directly or indirectly by the high induced charges from the nearly clouds (back flashover)(1).
- Switching overvoltages, caused by switching operations.
- Temporary overvoltages can happen in the networks and power systems in case of load rejection or single-phase earth fault (1,2,3).

Surges and overvoltages determine and thus define the costs of insulation for equipment and installations in electrical systems. Therefore overvoltages must be reduced to avoid over-insulation. Measures are thus, used such as earth wire and tower footing resistance against lightning surges and closing resistors for switching overvoltages.

Finally, the use of surge arresters is considered the counter measure against all kinds of overvoltages to reduce the insulation levels in networks (1,4,5).

1.3 <u>Surge Arresters as a Protection Against</u> <u>Overvoltages</u>

Surge arresters have been used to protect the networks and power systems from surges and overvoltages. It can be used from low voltages systems to high altitude application. They are used against lightning,