EFFECT OF SULPHUR AS SOIL AMENDMENT ON BEHAVIOUR OF SOME MICRONUTRIENTS IN CALCAREOUS SOIL

BY

GAMAL GHONEIM SALEM BEHAIRY

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

IN

AGRICULTURAL SCIENCE
SOIL SCIENCE

Department of Soil FACULTY OF AGRICULTURE AIN SHAMS UNIVERSITY

1989

Approval Sheet

EFFECT OF SULPHUR AS SOIL AMENDMENT ON BEHAVIOUR OF SOME MICRONUTRIENTS IN CALCAREOUS SOIL

Ву

GAMAL GHONEIM SALEM BEHAIRY

(B.Sc. of Soil Science, Faculty of Agriculture, Zagazig University, 1978)

This thesis for M.Sc. degree has been approved by :

Prof. Dr. S.M. El-Sherif
Prof. of Soil Science

Prof. Dr. M.A. Aziz
Prof. of Soil Science

Prof. Dr. M.M.A. Wassif
Prof. of Soil Science

5. ECSheril

Al Al la mile

Date of examination: 15 /5 /1989

DEDICATION

I wish to express gratitude and indebtness to the soul of my father who gave me everything I gained through his excellent care during his life, and also my mather and to all my family members.

EFFECT OF SULPHUR AS SOIL AMENDMENT ON BEHAVIOUR OF SOME MICRONUTRIENTS IN CALCAREOUS SOIL

Вy

GAMAL GHONEIM SALEM BEHAIRY

B.Sc. in Soil Sci. 1978

Faculty of Agriculture

Zagazig University

Under the supervision of : Prof. Dr. A.H. El-Damaty

Professor of soil Science

Prof. Dr. S.M. El-Sherif Professor of soil Science

ABSTRACT

An investigation was carried out to study the effect of elemental sulphur, sulphuric acid and spent slurry on some soil properties and the availability of P, Fe, Mn and Zn as well as the dry weight and mineral content of pea plants grown on calcareous soils.

The results of the experiments showed the following:

- 1. <u>Incubation experiment:</u>
- a. Soil pH was decreased due to the addition of different

amendments to all the studied soils except the addition of spent slurry which had no effect on soil pH.

- b. Electrical conductivity (EC) values were increased due to the addition of different amendments to all the studied soils. However, spent slurry alone was less effective than other treatments.
- c. Soluble sulphate in all soils was increased due to the addition of different amendments except spent slurry alone. Sulphuric acid treatment was superior to other treatments.
- d. Available P was increased by applying different amendments to all soils and sulphuric acid treatment was superior to other treatments.
- e. Available Fe, Mn and Zn values were increased by applying all amendments to the studied soils. Elemental sulphur + spent slurry was superior to other treatments.
- 2. Pot experiment: ion of pea plant, soil pH was decreased due to the addition of different amendments to all studied soils, except spent slurry alone which had no effect on soil pH. Generally, soil pH after cultivation was lower than before it.
- b. EC values were increased with all applied treatments. EC values after cultivation were higher than before it.
- c. Similar trend to that observed for EC was also obtained for sulphate.
- d. Values of available P, Fe, Mn and Zn were increased by applying all amendments. Nutrients availability after

cultivation was higher than before it.

- e. Dry weight of pea plants was increased by applying all amendments to El-Havaria soil. The combination of elemental sulphur + spent slurry was superior to other treatments for the other soils.
- f. P, Fe, Mn and Zn contents of pea plants were increased by the application of all amendments and the combination of elemental sulphur + spent slurry was superior to other treatments.

ACKNOWLEDGMENT

The author wishes to express his gratitude and appreciation to Prof. Dr. A.H. El-Damaty and Prof. Dr. S.M. El-Sherif, Professors of soil Science, Soils Department, Faculty of Agriculture, Ain Shams University for suggesting the problem and encouragement during the preparation of the manuscript.

Thanks are also due to Prof. Dr. I.H. El-Bagouri, Professor of soil Science, Desert Research Institute for his kind cooperation.

CONTENTS

No	•	Page
1.		1
2.		3
	2.1. Sources of sulphur in Egypt	3
	2.2. Sulphur in soils	4
	2.3. Chemical behaviour of elemental sulphur in	_
	soils	5
	2.3.1. Oxidation of sulphur and factors	_
	affecting it	6
	2.3.2. Reduction of sulphur and factors	
	affecting it	10
	2.4. Effect of elemental sulphur on availability	
	of nutrients in soils	11
	2.5. Effect of elemental sulphur on plant growth	
	and mineral composition	14
	2.6. Effect of organic manures on plant growth and	
	mineral composition	19
3.	Materials and methods	21
	3.1. Soil sampling	21
	3.2. Experimental procedures	22
	3.2.1. Incubation experiment	22
	3.2.2. Pot experiment	24
	3.3. Soil and plant analyses	26
	3.3.1. Soil analysis	26
	3.3.2. Plant analysis	27
A	Results and discussion	28
٦.	4.1. Incubation experiment	28
	4.1.1. Soil reaction	28
	4.1.2. Electrical conductivity (EC)	33
		37
	4.1.3. Soluble sulphate	42
	4.1.4. Available phosphorus	47
	4.1.5. Available Fe, Mn and Zn	
	4.1.5.1. DTPA extractable Fe	47
	4.1.5.2. DTPA-extractable Mn	51
	4.1.5.3. DTPA-extractable Zn	54
	4.2. Pot experiment	56
	4.2.1. Soil analyses before and after	
	cultivation	57
	4.2.1.1. Soil reaction	57
	4.2.1.2. Electrical conductivity	60
	4.2.1.3. Soluble sulphate	63
	4.2.1.4. Available phosphorus	67
	4.2.1.5. Available Fe, Mn and Zn	71
	4.2.1.5.1. DTPA-extractable Fe	71
	4.2.1.5.2. DTPA extractable Mn	74
	4.2.1.5.3. DTPA-extractable Zn	77
	4.2.2. Plant analysis	79
	4.2.2.1. Dry matter of pea plants	80
	4 2 2 2 Phosphorus content of pas plants	0.4

>_;

No.		Page
	4.2.2.3. Micronutrients content of pea	•
	plants	88
	4.2.2.3.1. Iron content of pea	
	plants	88
	4.2.2.3.2. Manganese content of pea	
	plants	92
	4.2.2.3.3. Zinc content of pea	
	plants	95
5.	Summary	98
	References	104

List of tables

No.		Page
1	Physical and chemical properties of the investigated soil samples and chemical composition of spent slurry	23
2	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil pH after incubation	29
3	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil electrical conductivity after incubation	3 4
4	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soluble sulphate after incubation	38
5	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available phosphorus after incubation	44
6	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available Fe, Mn and Zn after incubation	49
7	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil pH before and after cultivation	58
8	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil electrical conductivity before and after cultivation	61
9	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soluble sulphate before and after cultivation	64
10	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available phosphorus before and after cultivation	68
11	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available Fe, Mn and Zn before and after cultivation	72
12	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on dry weight of pea plants gown on investigated soils	81

No.		Page
13	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on phosphorus of pea plants gown on investigated soils	85
14	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on Fe, Mn and Zn of pea plants gown on investigated soils	89

List of figures

No.		Page
1	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil pH after incubation	30
2	Effect of elemental sulphur with or without spent slurry on soil pH values after incubation	32
3	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil electrical conductivity after incubation	35
4	Effect of elemental sulphur with or without spent slurry on soil electrical conductivity after incubation	36
5	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soluble sulphate after incubation	39
6	Effect of elemental sulphur with or without spent slurry on soluble sulphate after incubation	41
7	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available phosphorus after incubation	45
8	Effect of elemental sulphur with or without spent slurry on available phosphorus after incubation	46
9	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available iron after incubation	50
10	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available manganese after incubation	52
11	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available zinc after incubation	55
12	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil pH before and after cultivation	59
13	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soil electrical conductivity before and after cultivation	62

No.		Page
14	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on soluble sulphate before and after cultivation	65
15	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available phosphorus before and after cultivation	69
16	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available iron before and after cultivation	73
17	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available manganese before and after cultivation	75
18	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on available zinc before and after cultivation	78
19	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on dry weight of pea plants	82
20	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on phosphorus concentration and uptake of pea plants	86
21	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on iron concentration and uptake of pea plants	90
22	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on manganese concentration and uptake of pea plants	93
23	Effect of elemental sulphur with or without spent slurry, sulphuric acid and spent slurry on zinc concentration and uptake of pea plants	96

1. INTRODUCTION

Calcareous soils are of wide occurrence in Egypt. These soils contain considerable amounts of calcium carbonate which affect the chemical and physical properties of these soils. Therefore, amendments must be used to increase the potential of such soil.

Sulphur, gypsum, sulphuric acid and organic manures are used as soil amendments. The addition of such materials to soil promotes its physical, chemical and biological properties.

Sulphur is generally added to soil either as elemental sulphur or as associated sulphate anion (SO₄--) with different cations in the fertilizers such as potassium sulphate, ammonium sulphate or calcium sulphate.

In (1978) world sulphur production increased to 52.5 million tons. Sulphur in the elemental form or in the form of gypsum is used as plant nutrient. Sulphur is widely used because the higher grade phosphatic fertilizers (triple superphosphate and ammonium phosphate), especially those produced by wet process, contain a considerable amount of it, therefore phosphatic fertilizers do not necessitate sulphur incorporation with it.

Since the improvement of calcareous soils is usually reclaimed by the application of organic manures; such as farmyard manure, compost, green manures and domestic and