17.1n 14

EFFECTIVENESS OF GAMMA IRRADIATION ON TROGODERMA GRANARIUM EVERTS

BY

OSAMA HAMID GHARIB

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

£32.7-

ាំ ។

Agricultural Science (Entomology)

Department of Plant Protection

Faculty of Agriculture

Ain Shams University

1989

29697

Approval Sheet

EFFECTIVENESS OF GAMMA IRRADIATION ON TROGODERMA GRANARIUM EVERTS

Ву

OSAMA HAMID GHARIB

B.Sc. (Agric.), 1974.

M.Sc. (Agric.), 1982

This thesis for Ph. D. degree has been

approved by :

Prof Dr. M. Hafez

A7740 f=2 Prof. of Entomology.

Prof. Dr. A. Abdel Hafez Selim -----

Prof. of Pesticides. .

Prof. Dr. E. El-Kady

Prof. of Economic Entomology.

EFFECTIVENESS OF GAMMA IRRADIATION ON TROGODERMA GRANARIUM EVERTS

Ву

OSAMA HAMID GHARIB

B.Sc. (Agric.), 1974

M.Sc. (Agric.), 1982

Under the Supervision of : Prof. Dr. E.A. El-Kady

Prof. of Economic Entomology

Prof. Di. M.Y.Y. Ahmed

Prof. of Entomology

4 Effect of gamma irradiation on male's mating ability

Longevity, fecundity and mating ability of males irradiated as larvae with substerilizing doses were reduced, while these irradiated as pupae or adults were similar to the control.

There is no recovery in male fertility when males treated as larvae, pupae or adults with substerilizing or sterilizing doses.

5- Effect of gamma irradiation on the different developmental stages of <u>T. granarium</u> infested certain packages.

800 Gy was the most effective dosage for killing the different stages of the Khapra beetles within one month.

Plastic sacs was sufficient to prevent reinfestation of insects than linen sacs through the storage period (6 months).

6- Testes ultrastructure of sterilized males

Ultrastructure of the testicular follicles in untreated males of the Khapra beetles showed them to be somewhat typical to many coleopteran species.

Following irradiation, with sterilizing dose (200 Gy), many cellular contents and organelles were disrupted. Also, thickness of cell membranes, fewer number of cysts, vacuoles and malformed spermatozoa were presented.

CONTENTS

	Page
Acknowledgment	
1. Introduction	1
2. Review of literature	4
3. Materials and Methods	57
3.1. Rearing technique	57
3.2. Experimental insects	5 7
3.3 Gamma cell irradiation unit	58
3.4. Experimental technique	59
3.4.1. Biological studies	59
3.4.1.1. Effect of gamma irradiation on male parents	59
3.4.1.2. Effect of substerilizing doses through	
three filial generations	60
3.4.1.3 Effect of substerilizing doses on mating	
competitiveness of males through three filial	
generations	61
3.4.1.4. Effect of gamma irradiation on males mating	
ability	62
3.4.1.5. Effect of gamma radiation on the different	
developmental stages infested certain	
packages of wheat	63
3.4.2. Histological studies	64
3.4.2.1. Effect of the sterilizing dose on the	
ultrastructure of male testes	64
4. Results	66
4.1 Effect of Gamma irradiation on male parents	66
4.1.1. Life-span	66
4.1.2 Fecundity and fertility	67
4.1.3. Survival of F, progeny	68
4.2. Effect of substerilizing doses through three	
filial generations	75
4.2.1. Irradiated male parents as full-grown larvae	75
4.2.1.1. Effects on F progeny	75

	Page
4.2.1.2 Effects on F ₂ progeny	77
4.2.1.3 Effects on F ₃ progeny	78
4.2.2. Irradiated male parents as full-grown pupae	83
4.2.2.1. Effects on F_i progeny	84
4.2.2.2. Effects on F ₂ progeny	85
4.2.2.3. Effects on F_3 progeny	86
4.2.3. Irradiated male parents as 1-day-old adults	91
4.2.3.1. Effects on F, progeny	92
4.2.3.2. Effects on F_2 progeny	94
4.2.3.3. Effects on F_3 progeny	95
4.3. Effect of substerilizing doses on mating	
competitiveness of males through three filial	
generations	101
4.3.1. Irradiated male parents as full-grown pupae	101
4.3.2. Irradiated male parents as 1-day-old adults	103
4.4. Effect of gamma irradiation on male's mating	
ability	107
4.4.1. Number of mating and life span	107
4.4.2. Fecundity and fertility	108
4.5. Effect of gamma radiation on the different	
developmental stages infested certain packages	
of wheet	115
4.5.1. Effects on population density during the	
storage period	115
4.5.2 Food consumption during the tested storage period.	119
4.6. Effect of sterilizing dose on the ultrastructure	
of the male testes	125
4.6.1. Spermiogensis in the untreated \underline{T} , granarium teste	s ₁₂₅
4.6.2. Effect of sterilizing dose on T. granarium testes	136
5. Discussion	143
6. Summary	168
7. References	174
Arabic summary	

List of Tables

		Page
Table (1):	Effect of gamma radiation on life span of	
	T. granarium males treated as larvae, pupae	
	or adults	70
Table (2):	Effect of gamma radiation on fecundity and	
	fertility of <u>T. granarium</u> male parents	
	irradiated as larvae, pupae or adults	71
Table (3):	Effect of gamma radiation on adult progeny	
	produced by <u>T. granarium</u> male parents	
	irradiated as larvae, pupae or adults	72
Table (4) :	Effect of substerilizing dose on the	
	different developmental stages of T .	
	granarium from male parents irradiated as	
	full-grown larvae through three filial	
	generations	79
Table (5):	Effect of substerilizing dose on the	
	reproductive potential of F_1 , F_2 and F_3	
	progeny of <u>T. granarium</u> male parents	
	irradiated as full-grown larvae through	
	three filial generations	80
Table (6) :	Effect of substerilizing dose on the	
	different developmental stages of T .	
	graparium from male parents irradiated as	

			Page
		full-grown pupae through three filial	
		generations	87
Table	(7):	Effect of substerilizing dose on the	
		reproductive potential of F_1 , F_2 and F_3	
		progeny of <u>T. granarium</u> male parents	
		irradiated as full-grown pupae through	
		three filial generations	88
Table	(8):	Effect of substerilizing dose on the	
		different developmental stages of T.	
		granarium from male parents irradiated as	
		l-day-old adults through three filial	
		generations	97
Tablo	(9):	Effect of substerilizing dose on the	
		reproductive potential of F_1 , F_2 and F_3	
		progeny of <u>T. granarium</u> male parents	
		irradiated as i-day-old adults through	
		three filial generations	98
Table	(10):	Fertility and competitiveness values of F_{i} .	
		F_2 and F_3 <u>T. granarium</u> males through three	
		successive filial generations (irradiated	
		male parents as full-grown pupae)	105
Table	(11):	Fertility and competitiveness values of F_{i} .	
		and F ₃ T. granarium males through three	
		successive filial generations (irradiated	
			106

			Page
Table	(12):	Effect of substerilizing or sterilizing	
		doses of gamma radiation on mating ability	
		and life span of <u>T. granarium</u> males	
		irradiated as larvae, pupae or adults	111
Table	(13):	Fecundity of normal T. granarium females	
		mated to males exposed to gamma irradiation	
		as larvae, pupae or adults	112
Table	(14):	Percent hatchability of eggs laid by normal	
		T. granarium females mated to males	
		irradiated in the larval, pupal or adult	
		stage	113

List of Figures

		Page
Fig (1):	Effect of gamma radiation on percent egg	
	hatchability of <u>T. granarium</u> male parents	
	treated as larvae, pupae or adults	73
Fig (2):	Effect of gamma radiation on number of adult	
	progeny per female mated to <u>T. granarium</u>	
	males treated as larvae, pupae or adults	74
Fig (3):	Effect of substerilizing dose on percentage	
	of egg hatch at different mating	
	combinations through three filial generations	
	resulted from <u>T. granarium</u> male parents	
	irradiated as full-grown larvae	81
Fig (4):	Effect of substerilizing dose on number of	
	adult progeny per female at different mating	
	combinations through three filial	
	generations resulted form T. granarium male	
	parents irradiated as full-grown larvae	82
Fig (5):	Effect of substerilizing dose on percentage	
	of egg hatch at different mating combinations	
	through three filial generations resulted	
	from T. granarium male parents irradiated as	
	full-grown pupae	89
Fig (6):	Effect of substerilizing dose on number of	

	1 450
adult progeny per female at different mating	
combinations through three filial	
generations resulted from T. granarium male	
parents irradiated as full-grown pupae	90
Fig (7): Effect of substerilizing dose on percentage	
of egg hatch at different mating combinations	
through three filial generations resulted	
form <u>T. granarium</u> male parents irradiated as	
1-day-old adults	99
Fig (8): Effect of substerilizing dose on number of	
adult progeny per female at different mating	
combinations through three filial generations	
resulted from <u>T. granarium</u> male parents	
irradiated as 1-day-old adults	10 0
Tiradiatou as I day sta dadits	
Fig (9): Percentage of different live stages of T .	
granarium per 500gm wheat packaged in linen	
sacs	1 2 1
Fig (10): Percentage of different live stages of <u>T.</u>	
granarium per 500gm wheat packaged in	4.00
plastic sacs	122
Fig (11): Weight of wheat grains consumed by infested	
stages of T. granarium in the linen sacs	123
Fig (12): Weight of wheat grains consumed by infested	

			Page
		stages of T. granarium in the plastic sacs	124
Fig	(13):	Longitudinal section at the apical part of	
		zone of transformation. Also, a distal part	
		of the zone of maturation and reduction is	
		observed where spermatids are present in	
		cysts. X 5.000	131
Fig	(14):	Magnification of Fig. 13 showing formation of	
		early spermatid with a round nucleus.	
		Nucleus (n); nebenkern (neb); rough	
		endplasmic reticulum (rer) golgicisternae	
		(gc); golgibody (g). X 5.000	131
Fig	(15):	Magnification of Fig. 13. showing the unequal	
		distribution of cytoplasm between the	
		resulting spermatids. X 5.000	131
Fig	(16):	Sperms ensheathed in nucleated cytoplasm and	
		free immature stages of sperms. X 5.000	132
Fig	(17):	Transverse section of a tail associated with	
		a late, round spermatid nucleus. Axial	
		filament (af); mitochondrial derivative (md)	
		with granules (g); mitochondrial crista (cr)	
		X 15.000	132
Fig	(18):	Transverse section of a spermatid tail at a	
		lator stage than that soon in Fig.17	

		Page
	developing accessory tubules (at); coarse	
	fibre (cf) developing between accessory	
	tubules; mitochondrial derivatives (md);	
	microtubules (mt); golgi cisternae (gc). X	
	50.000	132
Fig (19):	Transverse section of a spermatid tail at a	
	later stage than Fig.18. Golgi cisterna	
	surrounding tail filament bundle; mitochon-	
	drial derivatives surrounded by microtubules	
	(mt); mitochondrial granule (g); paracrys-	
	talline material (pm); rod (r) derived from	
	centriole adjunct and surrounded by	
	microtubules; will-defined arc - shaped	
	tubules (as). X 100.000	132
Fig (20):	Transverse section of spermatid tail later	
	than that exhibited in Fig.19. Mitochondrial	
	derivative (md); axial filament (af); out	
	growth of golgi cisterna (gc). X15.000	133
Fig (21):	Advanced stage of a spermatid tail. X 15.000.	133
Fig (22):	Longitudinal section of intermediate	
	spermatid with a conical nucleus. Nucleus	
	(n); centriole adjunct (ca) with electron-	
	translucent zones; axial filament (af);	
	nuclear pore (np); distal centriole (dic);	
	pro-acrosomal granule (pa); interstitial	
	membrane (im) V 25 000	134

		Page
Fig (23):	Longitudinal section of late spermatid with	
	a spindle-shaped nucleus. Nucleus (n);	
	contriole adjunct (ca); distal centriole	
	(dic); acrosome (a) X 15.000	134
Fig (24):	Transverse section showing elongation and	
	maturation of sperms. X 5.000	134
Fig (25):	Longitudinal section showing a later stage	
	of spermatids present in bundles. X 4.000	134
Fig (26):	Longitudinal section of mature sperms. Axial	
	filament (af); mitochondrial derivatives	
	(md); basal body (bb); nucleus (n). X	
	50.000	135
Fig (27):	Transverse section of sperm axoneme.	
	Accessory tubules (at); doublets each with	
	an "A" (A) and a "B" (B) tubule; central	
	tubule (ct); radial lamina (rl); coarse	
	fibre (cf); connectives (con) between outer	
	mitochondrial membrane and axoneme. X50.000.	135
Fig (28):	The anterior part showing primary and secon-	
	dry spermatogonia with necrotic cells (npg,	
	nsg) and clumbing chromatin; the basal part	
	containing primary spermatocytes showing	
	necrosis (npc). Picnotic nuclei and the	
	haphazard arrangement of chromatin clumps in	
	4h	120