
STUDY OF INCIDENCE, COURSE, AND SIGNIFICANCE OF PYREATIA AFTER ACUTE MYOCARDIAL INFARCTION (AMI)

Thesis

Submitted in Partial Fulfilment for Master Degree of Cardiology

Ву

Dalal Gobrail Mohamed Kamel M.B., B.Ch.

Supervisors

Prof. Dr. MOHAMED KHAIRY ABDEL DAYEM
Prof. of Cardiology
Ain Shams University

Dr. Omar Salah Awaad Ass. Prof. of Cardiology Ain Shams University

Faculty of Medicine Ain Shams University 1987

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Prof. Dr. Mohamed Khairy Abdel Dayem, Prof. of cardiology, Faculty of Medicine, Ain-Shams University, for his valuable advices and sympathetic encouragement throughout the whole work.

I am deeply grateful to Dr. Omar Salah Awaad, Ass. Prof. of cardiology, Faculty of Medicine, Ain Shams University, who offered me a lot of his valuable time and experience for following up this work step by step; without his sincere and continuous guidance this work would have never come to light.

I would like also to thank all my colleagues for their valuable co-operation in conducting this work.

Central Library - Ain Shams University

List of Abbreviations

: acute myocardial infarction IMA

: coronary care unit CCO

 \hat{Z}_{k}^{k}

: congestive heart failure CHE

tuq tuo oatbase : COL

: creatine phosphokingue enzyme CPK

: electrocardiogram. ECC

: engo&enona blrogen. EL

: erythrocytic sedimentation rate. EZE

. heart failure. Ht.F.

: ischaemic heart disease. IHD

. Laboratory. rap.

: lactate dehyrogenase enzyme. PDH

.myocardial infarction. IM

FMI-syndrome: post myocardial infarction syndrome.

: serum glutamic oxalacetic transaminase enzyme. RCOL

. Temperature. •dmeT

: total leukocytic count. TIC

: urinary tract infection. ITU

: Live-hydroxy tryptamine. TH-2

CONTENTS

		Page
I.	INTRODUCTION	1
II.	AIM OF THE WORK	2
III.	REVIEW OF LITERATURE:	
	- General Accounts on Fever	3
	- Temperature course in AMI and its Signifi-	
	cance	16
	- Complicating and Associating Diseases which	
	Can Change the Usual Temperature Course	
	in AMI	24
	A) Cardiac complications	25
	B) Extracardiac complications	42
	- Clinical Approach to Fever in Patients with	
	Ischaemic Heart Disease (IHD)	55
	- Brief Accounts on Clinical Picture of AMI.	59
IV.	MATERIAL AND METHODS	67
	RESULTS	69
	DISCUSSION	88
	CONCLUSION AND RECOMMENDATIONS	95
	SUMMARY	97
	REFERENCES	103
	ARARTO SIMMARY.	103
	ARADIN JUNINIARI .	

INTRODUCTION

INTRODUCTION

Fever in acute myocardial infarction (AMI) is a normal response to tissue necrosis. It usually takes a characteristic course, duration and amplitude. However, some patients hardly develop any pyrexia while others develop high and prolonged fever.

The development of complications, either cardiac or extracardiac, may be one of the factors which can alter this usual fever course in AMI.

Although some previous studies have attempted to identify this usual course of fever and its significance, little is known about the individual susceptibility, type of infarction, extent of infarction, age, sex, and other associating diseases on the severity and duration of fever, and whether it can predict complications or prognosis in patients with AMI.

Finding the relation of fever to different laboratory investigations in patients with AMI may be of great help in early detection and management of complications, whether cardiac or extracardiac.

AIM OF WORK

AIM OF THE WORK

The aim of this prospective study was to investigate the significance of fever in AMI, its relation to different factors, like age, type and extent of infarction, drug intake and complications.

Also, this work aimed at investigating the relation of this fever to different laboratory findings and whether it can predict complications, cardiac or extracardiac, and prognosis in patients with AMI.

REVIEW OF LITERATURE

GENERAL ACCOUNTS ON FEVER

Normal body temperature:

Individuals maintain their body temp. at about 37°C despite wide variations in environmental temp. For some individuals, normal body temp. can be below or above 37°C without constituting a pathologic process. Rectal temp. is usually 0.5 to 1.0°F higher than oral temp. There is a considerable variation in temp. in a given individual. During 24 hours period, body temp. varies from low point in early morning to the highest levels at 4 to 6 P.M. (Dinarello, 1985) or at 6 to 10 P.M. (Petersdrof, 1980). This diurnal variation of normal body temp. appears in a pattern that is inverse of endogenous corticosteroid release. The amplitude of this diurnal variation, also called "Circandian temp. rhythm". is about 0.6°C and individuals retain their circandian rhythm throughout life despite intervening bouts of prolonged illness. Although it has been postulated that this diurnal variation is dependent upon increasing activity during the day and rest at night, the pattern is not reversed in persons who work at night and sleep during the day for long

periods of time. Severe or prolonged exercise can produce considerable elevation in body temp. (Peters-drof, 1980; Hoeprich, 1980 and Dinarello, 1985).

Definition of fever:

An elevation above the normal amplitude of daily temp. for an individual is considered fever. During fever, the morning low and evening high temp. pattern can still be observed. (Dinarello, 1985).

Thermoregulation:

Fever is best understood at the hypothalamic level. The thermoregulatory center located in the anterior hypothalamous regulates internal temp. at about 37°C primarily by its ability to balance heat production and peripheral heat loss. During fever, the thermostat setting in the hypothalamic center shifts upwards e.g. from 37 to 39°C. This results in signals to increase heat production and decrease heat loss. Heat production from shivering muscles and heat coservation from peripheral vasoconstriction continue until the temp. of the blood supplying the hypothalamous matches the higher thermostat setting. (Dinarello, 1985). For example in

Central Library - Ain Shams University

patients with thyrotoxicosis, there is exaggerated heat production, while in patients with congestive heart failure (CHF) there is an impairment in heat dissipation as a result of diminished cardiac out put (COP) and decline in cutaneous blood flow. Individuals taking drugs which impair sweating, as atropine, scopolamine, phenothiazine, monoamine-oxidase inhibitors, glutethemide, lysergic acid diethylamide (LSD), amphetamines and inhalation anaesthetics, may have fever in warm weather. (Petersdrof, 1980 and Dinarello, 1985).

Pathogenesis of fever:

Fever is a consequence of many stimuli, including bacteria and their endotoxins, viruses, yeasts, antigenantibody reactions, hormonal substances, drugs and synthetic polynucleotides. These substances, which have been termed collectively "Exogenous pyrogens", are both diverse and complex. It has been postulated that they act through an intermediary substance termed "Endogenous pyrogen". (Petersdrof, 1980).

Endogenous pyrogen (E.P.):

It is a basic protein of low molecular weight, first described by Beeson in 1948. Subsequent animal and human

studies established the importance of E.P. in mediating fever and as being responsible for the upward setting of the hypothalamic thermostat. This substance is produced in response to infections, toxic substances, or immunologic reactions.

E.P. is a product of leukocytes and macrophages including Kupffer cells, splenic sinusoidal cells, alveolar macrophages and peritoneal lining cells. E.P. has not been isolated from lymphocytes, but these cells may react with antigens and through the action of lymphokinase, they may stimulate neutrophils and macrophages and possibly monocytes to release E.P.

When stored in cells, E.P. is not present in active form. Rather, its release requires synthesis of new messenger RNA and protein. Because it is present in such small amounts, E.P. has been difficult to detect in human serum or exudate. Once released, E.P. probably acts on the thermosensitive neurons in the preoptic region of the anterior part of hypothalamous. These neurons control the constancy of blood temp. and are the point where fever is initiated. The action of E.P. on the hypothalamous is by no means simple. It appears

as if there must be a release of serotonin (5-HT), a thermogenic amine, to mediate the febrile response. In addition, E.P. induces synthesis of prostaglandines E_1 and E_2 in the hypothalamous where they function as central transmitters in the initiation of fever. The action of antipyretics, as aspirin, has been shown to be the result of their ability to block prostaglandin synthesis. The prostaglandins, in turn, lead to an increase in cyclic-AMP which may be important in the metabolic processes that are operative in fever. (Petersdrof, 1980 and Dinarello, 1985).

Manifestations of fever:

The subjective symptoms of fever include sensation of feeling cold or warm, headache, myalgias, arthralgias, and general malaise. The objective signs besides elevated body temp. include increased respiratory rate, widened pulse pressure, and rapid heart rate. Laboratory findings are altered in fever. The most notable of these is elevated erythrocytic sedimentation rate (ESR) resulting from increased haptoglobin, fibrinogen, ceruloplasmin, and C-reactive protein levels (Dinarello, 1985). In some patients, the neutrophil count is elevated.