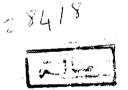
CHEMICAL STUDIES ON Cynara Scolymus (ARTICHOKE) (FAMILY COMPOSITAE) CULTIVATED IN EGYPT

A Thesis Submitted To
FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY


bγ

Abd-El-Ally Abd-El-Azez Shahat

14 - 192

B.Sc. (Chemistry)

For Partial Fulfilment For Requirment Of The Degree Of

MASTER OF SCIENCE

NATIONAL RESEARCH CENTRE CAIRO-EGYPT 1989

To My Family

CHEMICAL STUDIES ON CYMARA SCOLYMUS L. (ARTICHOKE)

(FAMILY COMPOSITAE) CULTIVATED IN EGYPT

Advisor

1. Prof. Dr. A.M. Sammour

2. Prof. Dr. F.M. Hammouda

3. Prof. Dr. M.M. Sief-El-Hasr

Approva1

Level ;

Chairman of Chemistry Dept. Faculty of Science Ain Shams University

NOTES

4.)

Beside the work carried out in this thesis, the candidate; Abdel Atty A. Shahat, has persued postgraduate studies for the partial fulfilment of the Master degree of Science during the academic year 1983/1984 in the following topics:

- 1. Physical Organic Chemistry.
- 2. Spectroscopy (UV, IR, NMR, MS).
- 3. Organic Reactions.
- 4. Free-radical Chemistry.
- 5. Advanced Heterocyclic Chemistry.
- 6. Quantum Chemistry.
- 7. Polymer.
- 8. Instrumental Analysis.
- 9. Foreign Language (Germany).

He has passed successfully the examination, in the above mentioned topics.

Chairman of the Chemistry Dept. Faculty of Science, Ain Shams University

ACKNOWLEDGEMENT

I am greatly indebted to Prof. Dr. Abdel Maged Sammour, Emeritus Dean of Faculty of Science, Ain Shams University for his constant supervision and guidance throughout the work.

I am deeply indebted to Prof. Dr. Faiza M. Hammouda, and Prof. Dr. Medhat M. Sief-El-Nasr, of the Pharmaceutical Sciences Department, National Research Centre for their supervision, valuable advice, encouragment and for the great help in the preparation of the thesis.

I am deeply indebted to Prof. Dr. Abdel Fattah M. Rizk, for his kind help, and useful advice.

I owe a great dept to Prof. Dr. Shams I. Ismail, Pharmaceutical Sciences Department, National Research Centre, for supplying all the facilities during the whole work and useful advice.

I wish to express my deep gratitude to Prof. Dr. Hassan A. Hassan, Prof. of Horticulture, Faculty of Agriculture, Zagazig University for his great help and co-operation during the progress of this investigation/

I owe a great to Dr. N.M. Hassan and also Mr. Alaa S. Kamel of the Pharmaceutical Sciences Department, National Research Centre, for their useful advice and great help throughout this work.

I would further like to express my sincere thanks to all my colleagues at the Pharmaceutical Sciences Department, National Research Centre for their encouragment and kind co-operation.

Grateful acknowledgement is expressed to the National Research Centre, Cairo, Egypt, for the facilities given which made this work possible.

CONTENTS

PAGI 1
3
4
4
8
_
12
13
14
26
27
30
30
34
35
36
36
38
38
39
39
4 J

~.

INVESTIGATION OF THE FLAVOURE	PAGE
INVESTIGATION OF THE FLAVONOIDS	48
1. Preparation of the flavonoid ·····	48
2. Chromatographic Investigation	49
2.1. Paper chromatography	49
2.2. Thin-layer chromatography	49
2.2.1. Polvamide	
	49
	50
	53
3.1. Preparative thin-layer chromatography of the crys-	
talline substances A	53
3.1.1. Identification of luteolin - 7 - 0 - glucoside	
(Cynaroside)	53
3.1.1.a. Spectroscopic measurements	
3.1.2. Identification of apigenin-7-0-glucoside	
3.2. Column chromatographic fractionation of the original) '
mother liquor of the ethylacetate extract	
	3
3.2.1. Identification of luteolin-7-rhamnoglucoside	
(Scolymoside)7	
3.2.2. Identification of luteolin8	0
QUANTITATIVE DETERMINATION OF THE ACTIVE CONSTITUENTS	
OF THE LEAVES OF THE STUDIED CYNARA SCOLYMUS	
	4
I- Spectrophotometric Determination of the Total Active	
Constituents8	1

PAGE
a) Determination of the flavonoids
Standared curve of rutin85
b) Determination of the polyphenols
Standared curve of cynarin 87
1. Effect of Plant Age of the Content of Growing-up
Leaves
2. Effect of Number of Harvests on the Leaves content 90
3. Quantitative Comparison of the Active Constituents in
Egyptian and Diploid Cynara scolymus Leaves 92
II) Quantitative HPLC Analysis of the Individual Active
Compounds 93
a) Effect of plant age on the individual compounds in
the growing-up leaves
b) Effect of number of harvests on the individual
compounds 100
c) Effect of successive plantation on the individual
compounds 101
d) Quantitative comparison of the individual active
compounds in Egyptian and diploid Cynara scolymus
leaves
DISCUSSION
DISCUSSION
REFERENCES 113
ARABIC SUMMARY

LIST OF FIGURES

Fig.	(1	Page
_		Cynara scolymus (Romanian strain)
Fig.		Cynara scolymus (Romanian strain) (flower head) 28
Fig.		Cynara scolymus (Egyptian strain)
Fig.	(4)	Cynara scolymus (Romanian strain) (flower head) 29
Fig.	(5)	Thin layer chromatography of the flavonoids of
		Cynara scolymus and authentic substances 51
Fig.	(6)	Tow dimensional paper chromatography of ethyl
		acetate extract 52
Fig.	(7)	Fragmentation pattern of luteolin 55
Fig.		U.V absorption spectra of isolated aglycone of
		flavonoid substance I (luteolin) in MeOH and MeOH,
		NaOMe 58
Fia.	(9)	
	(-)	U.V absorption spectra of isolated aglycone of
		flavonoid substance I (luteolin) in neutral acidic
	(>	A1C1 ₃ 59
Fig.	(10)	U.V absorption spectra of isolated aglycone of
		flavonoid substance I (luteolin) in presence of
		NaOAc & NaOAc + H ₃ BO ₃ 60
Fig.	(11)	U.V absorption spectra of isolated luteolin-7-0-
		glucoside in presence of NaOAc 63
Fig.	(12)	MS ions from Apigenin 66
		U.V absorption spectra of isolated aglycone of
		flavonoid substance II (Apigenin) in presence
		Of MeOH. MeOH + NaOMo
		67

r- <u>-</u>	(1.1)		Page
rig.	(14)	U.V absorption spectra of isolated aglycone of	
		flavonoid substance II (Apigenin) in presence	
		of Alcla Alcla : Hol	68
Fig.	(15)	U.V absorption spectra of isolated aglycone of	
		flavonoid substance II (Apigenin) in presence	
		of NaOAc, NaOAc + H ₃ BO ₃	69
Fig.	(16)	U.V absorption spectra of isolated apigenin-7-0-	
		glucoside in presence of NaOAc	72
Fig.	(17)	U.V absorption spectra of isolated luteolin-7-B-	
		rutinoside in presence of MeOH & MeOH + NaOMe	76
Fig.	(18)	U.V absorption spectra of isolated luteolin-7-B-	
		rutinoside in presence of neutral acedic AlCl3	77
Fig.	(19)	U.V absorption spectra of isolated luteolin-7-B-	,,
		rutinoside in presence of NaOAc & NaOAc + H3BO3	78
Fig.	(20)	Standered curve of rutin	86
		Standered curve of cynarin	
		HPLC chromatogram of cynara scolymus	88
		J. m. 5. Synara 3001yillas	QΩ

LIST OF TABLES

Table	(1)	Ultra-violet absorption spectra of the isolated	PAGI
		and authentic luteolin-7-0-glucoside and its	
•		aglycone	
Table	(2)		
	(-)	Ultra-violet absorption spectra of the isolated	
		and authentic Apigenin-7-0-glucoside and its	
		aglycone	70
Table	(3)	Column chromatographic fractionation of the	
		flavonoidal mixture	74
Table	(4)	Ultra-violet absorption spectra of the isolated	
		and authentic luteolin-7- β -rutinoside and its	
		aglycone	79
Table	(5)	Column chromatographic fractionation of the	
		eluted fractions (218-252)	81
Table	(6)	The $R_{\mbox{\scriptsize f}}$ values of the isolated flavonoids and	
		available authentic samples	
Table	(7)		02
TUDIC	(/ /	The percent of reactive constituents in the grown	
		up <u>Cynara scolymus</u> leaves	89
Table	(8)	The percent of active constituents in the leaves of	7
		Romanian strain (different harvests)	0.1
Table	(9)	The percent of active constituents in the leaves of	91
		Romanian strain (successive plantation)	
Table	(10)	The percent of active persons	92
	/	The percent of active constituent in the leaves of	
		Romanian and Egyptian strains	0.2

		F	AGE
Table ((11)	The retention time of individual active consti-	
		tuents in the leaves of Romanian strain	99
Table ((12)	Relative percentage of individual active compounds	
		in the grown-up leaves of <u>Cynara scolymus</u>	
		(Romanian strain)	102
Table ((13)	Relative percentage of individual active compounds	
		in the grown-up leaves of <u>Cynara scolymus</u>	
		(different harvests)	103
Table (14)	Relative percentage of individual active compounds	
		in the grown-up leaves of Cynara scolymus	
		(successive plantation)	104
Table (15)	Relative percentage of individual active compounds	
		in the leaves of Romanian and Egyptian strains	105

Summary