AGNOSIS CONT

RADIONUCLIDE IMAGING IN THE DIAGNOSIS

OF CHILDHOOD.

Essay

Submitted For Partial Fulfilment of

The Master Degree In

Pediatrics

Ву

Haidy Moheb Haleem M.B., B.Ch.

SUPERVISORS

Prof. Dr. Saadia Abdel Fattah
Prof. of Pediatrics
Ain Shams University

Prof. Dr. Mamdouh Salama Prof. of Neurosurgery Ain Shams University

Dr. Salwa Massoud Ibrahim

Lecturer of Radiation Oncology & Nuclear Medicine

Ain Shams University

1987

ť

ACKNOWLEDGEMENTS

First may I thank **Prof. Dr. Saadia Abdel Fattah,** Prof. of Pediatrics Ain Shams University. I always feel that she is the real kind mother who helps, supports and advices. I thank **GOD** for she was supervising my work.

I would like to thank **Prof. Dr. Mamdouh Salama**, Prof. of Neurosurgery, Ain Shams University. I felt him a great help in referring cases and he was always directing me to the right way.

As for **Dr. Salwa Massoud Ibrahim**, Lecturer of Radiation Oncology and Nuclear Medicine, Ain Shams University, she was not only a supervisor but also a great dear sister and friend. She helped me greatly all time and at any time. She encouraged me to go through this hard work solving all problems I met. I thank her very much and through her I acknowledge the whole department of nuclear medicine.

I wish to thank **Dr. Ahmad Talaat,** Lecturer of Radiology, Ain Shams University, for his great help in my clinical work, he was always guiding and directing this work.

Also, I would like to express my appreciation to **Dr. Hoda Lotfi,**Lecturer of Pediatrics Ain Shams University for her great assistance.

Lastly I wish to thank the patients for their good behaviour and obedience.

CONTENTS

			Page
I	Inti	roduction	1
ΙI	Ana	tomy and physiology of the brain	3
	*	Cerebral hemispheres	3
	*	Basal ganglia	5
	*	Thalamus and hypothalamus	5
	*	Cerebellum	6
	*	Medulla oblongata	7
	*	Spinal cord	7
	*	Ventricle system	8
	*	Brain circulation	9
	*	Blood - brain barrier	1:
III	Туре	es of brain tumor in children, site and class-	
	ific	cation	13
	*	Primary brain tumors	13
	*	Secondary brain tumors	20
IV	Non	radioactive studies in the diagnosis of intra-	_
	crai	nial neoplasms in children	. 22
	(1)	Plain X-ray of skull	. 22
	(2)	Cerebrospinal fluid	. 22
	(3)	Electroencephalography	. 23
	(4)	Radiographic contrast studies	. 23
	(5)	Echoencephalography	. 26
	(6)	Computed tomography	. 27

		<u>r</u>	age
	(7)	Magnetic resonance imaging	36
	(8)	Measurement of blood flow, oxygen utilization,	
		oxygen extraction ratio and fractional blood	
		volume in human brain tumors	38
V	Bra	in imaging devices	40
	*	Scintillation Gamma Camera	40
	A.	General concept of radionuclide imaging and	
		historical development	40
	з.	Basic principle of the Anger Camera	42
		1- System components	42
		2- Detector system and electronics	47
		3- Collimators	49
		4- Image display and recording systems	51
		5- Digital image processing system	52
		6- The scanning camera	53
	*	Special characteristics and potential of single	2
		photon emission computed tomography in the brai	in
		(SPECT)	55
VI	Rad	lionuclides used for brain imaging	58
	*	General principle on radionuclide	58
	*	Radiopharmaceuticals for localization of brain	
		tumors	61
		- Molecular dynamics of radiopharmacuetical	
		localization in the normal brain	61

-			<u>Page</u>
		- Molecular dynamics of radiopharmaceutical	
-	÷	localization imbrain tumors	63 64 66
		- ⁹⁹ TC ^m Glucoheptonate (⁹⁹ TC ^m GH)	69
		- ⁹⁹ TC ^M Diethylene Triamine Penta Acetic	
		aciā (DTPA)	70
	*	A potential new brain scanning agents	72
		- I ¹²³ iodoamphetamine	72
		- Cerebral uptake and retention of $^{99}\mathrm{TC}^{\mathrm{m}}$ -	
		hexamethylpropyleneamine oxime ($^{99}\text{TC}^{\text{m}}$ -HM-	
		PAC)	77
	*	Advantages of Radiopharmaceuticals in diag-	
		nosis of pediatric diseases	84
	*	Dose calculation	85
	*	Injection technique	86
VII	Тур	es of brain imaging	89
	*	Cerebral Radionuclide Angiogram (CRAG)	89
	*	Equilibrium static imaging	95
VII	I Cl	inical indications of cerebral perfusion stu-	
	die	s and static brain imaging as a reliable diag-	
	nos	tic examination in children	103
	I	Vascular - type lesions	103
	~ ~	Durata sumana	116

		Page
IX	Radionuclide cisternography in evaluating hydro-	
	cephalus, in imaging of subarachnoid space and	
	contiguous structures, in assessing the patency	
	of C.S.F. shunts and in identifying leaks of	
	C.S.F. from the subarachnoid space	. 130
Χ	Review of radionuclide imaging in the diagnosis	
	of intracranial neoplasms in five evaluable	
	children	. 151
XI	Summary and Conclusion	• 169
XII	Bibliography	• 173
VIII	Carabia Cummaru	

00000

I- INTRODUCTION

RADIONUCLIDE IMAGING IN THE DIAGNOSIS OF INTRACRANIAL NEOPLASMS OF CHILDHOOD

I- Introduction:

Intracranial tumors constitute the most frequent malignancy in children aged 1-14 years. Approximately 70% of verified tumors in children are gliomas, low grade astrocytomas and medulloblastomas, each constitutes a greater proportion of the glioma series. Neoplasms of the posterior fossa account for approximately one half of all pediatric intracranial neoplasms. Brain isotopic imaging cannot be expected to answer all questions possed in the evaluation of brain tumors of childhood, however radionuclide cerebral perfusion and static imaging are accepted screening procedures that are now widely used with no patient morbidity.

Children with the earliest of neurologic symptoms or behaviour disorders can be studied. Tumors involving the brain parenchyma, both primary and metastatic, and those of nerve sheath origin, such as acoustic neuromas, are probably visualized on static imaging because

of entery of radionuclide into the tumor cells themselves. This radionuclide accumulation in the tumor cell occurs gradually over a period of time of maximum tracer accumulation which may be 3 or more hours. This is, in part, the reason for doing delayed imaging for brain tumor detection. Depending on the blood supply, tumors of the brain parenchyma and those of nerve sheath may or may not be seen on the blood flow study.

Brain isotope scan, also plays an important role in the postoperative period in demonstrating the resolution of the lesions, the response to therapy and the evaluation of new lesions.

This essay reviews those instances where radionuclide brain imaging has shown particularly good specificity; in addition, highlights the use of brain isotopic scan in the diagnosis of intracranial neoplasms of childhood. Serial scintigraphy will be demonstrated in some evaluable cases.

II- ANATOMY AND PHYSIOLOGY OF THE BRAIN

II Anatomy and Physiology of the Brain:

The functions of the body are under the control of both the nervous and endocrine systems. The nervous system is the computer of the body and it controls the rapid activities of it which include muscular contraction, perception of changing visual events and the secretion rates of endocrine glands (Early, et al., 1979).

The nervous system has a sensory division and a motor division, the cerebral cortex integrates the body's higher functions; most of the cerebral cortex is located in the cerebral hemispheres.

Cerebral Hemispheres:

A large portion of the brain is made of the two cerebral hemispheres, they are separated by the longitudinal cerebral fissure. An extension of the dura mater forms the falx cerebri which projects into the longitudinal cerebral fissure. The cerebral hemispheres have dorsolateral, medial and basal surfaces, which contain many grooves known as fissures and sulci. The part of the brain between the grooves is known as convolutions, or gyri. The cerebral hemispheres are divided into 4-lobes: Frontal, parietal, occipital, and temporal.

The lateral cerebral fissure separates the temporal from the frontal lobe. The central sulcus (Fissure of Rolando) separates the frontal from the parietal lobe; the occipital lobe is separated from the parietal lobe by the parietal occipital fissure which passes along the medial surface of the posterior portion of the cerebral hemisphere. The cerebral cortex has an area of approximately 220,000 mm², and not more than one third of this area lies on the free surface or crown of the convolutions.

The total number of nerve cells in the human cerebral cortex has been estimated at between 7×10^9 and 14×10^9 . There are approximately 200 million nerve fibres that are received from and projected to the lower levels of the nervous system.

Functions:

The posterior portion of the frontal lobe, the so called prefrontal cortex of man; affects the motor system. This posterior portion is called the motor cortex, and it controls discrete voluntary movements of skeletal muscles. Both the right and left sides

of the motor cortex control each others. The parietal lobe receives the somatic sensory messages and it is also the part of the brain that receives sensations of stereoperception and can discriminate between differences in weight, texture and position. The temporal lobe is concerned with hearing and it is necessary to recognize and organize language. The occipital lobe is mainly related to vision. The nerve fibres that end in the cerebral cortex cross in the brain stem; therefore lesion in the left side of the cerebral cortex is recognized in the opposite extremities.

Basal Ganglia:

They are masses of gray matter situated deep within the cerebral hemisphere.

Function:

They exert an important regulating and controlling influences on motor integration. This area of the brain may also inhibit somatic reactions initiated by the cerebral cortex.

Thalamus and Hypothalamus:

The thalamus is a large ovoid gray mass located