EFFECT OF CERTAIN SOIL PROPERTIES ON ZINC AVAILABILITY AND LEVEL IN PLANT

BY

MOHAMED ALY OSSMAN ELSHARAWY

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural science
(Soil Science)

Department of Soils Faculty of Agriculture

Ain Shams University

1989

APPROVAL SHEET

EFFECT OF CERTAIN SOIL PROPERTIES ON ZINC AVAILABILITY AND LEVEL IN PLANT

BY

MOHAMED ALY OSSMAN ELSHARAWY

B.Sc. in Soil Sci., Fac. of Agric., Ain Shams Univ., 1978M.Sc. in Soil Sci., Fac. of Agric., Ain Shams Univ., 1983

This thesis for Ph. D. degree has been approved by :

Prof. of Soils, Atomic Energy Authority.

Academy of Scientific Research & Technology

Prof. Dr. M.S. Foda M.S. Foda

Prof. of Soils, Ain Shams Univ.

Prof. Dr. A.M. Elgala A. A. (Supervisor)

Prof. of Soils, Ain Shams Univ.

Date of examination : 2 / 11 / 1989.

EFFECT OF CERTAIN SOIL PROPERTIES ON ZINC AVAILABILITY AND LEVEL IN PLANT

BY

MOHAMED ALY OSSMAN ELSHARAWY

B.Sc. in Soil Sci., Fac. of Agric., Ain Shams Univ., 1978 M.Sc. in Soil Sci., Fac. of Agric., Ain Shams Univ., 1983

Under the Supervision of: Prof. Dr. A.M. Elgala
Professor of Soils, Ain Shams Univ.

Prof. Dr. A. Amberger
Professor of Plant Nutrition, Munich Univ.

Dr. A.A. Ibrahim
Assis. Prof. of Soils, Ain Shams Univ.

ABSTRACT

The present investigation was carried out to study the possible modification of Zn availability in the rhizosphere by means of plant root exudates. Root exudates, of corn; Giza 2 and Hagin 202 v., tomato; Uc 82 and UC 97 v. and wheat; Horizont v. were collected by growning plants for different periods under controlled environmental conditions using split medium and solution culture techniques. The total and type of amino acids and organic acids were evaluated. Zn availability in soil and its level in plant as affected by certain soil properties and Zn adsorption-desorption by alluvial soil clays as affected by pH. CaCO3 and phosphate were studied. Mathematical and statistical models which can predict Zn availability were also developed using computer.

EFFECT OF CERTAIN SOIL PROPERTIES ON ZINC AVAILABILITY AND LEVEL IN PLANT

BY

MOHAMED ALY OSSMAN ELSHARAWY

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural science
(Soil Science)

Department of Soils

Faculty of Agriculture

Ain Shams University

1989

EFFECT

B.Sc. in S

M.Sc. in f

Th

aţ

الله المالية ا

D

Results indicated that Zn absence from root growth medium led to a pronounced increase in total amounts of released amino acids and organic acids by corn and tomato plants roots using split medium technique and a high significant increase was recorded only for total amino acids in the root exudates of corn and wheat plants using solution culture technique. Corn and wheat root exudates significantly increased solubilized Zn from ZnO by the action of amino acids and organic acids as well as lowering pH of the rhizosphere as indicated by increasing H ions released to root growth medium of Zn deficient plants.

In adsorption-desorption was principally governed by the effect of pH followed by CaCO₃ treatments, while phosphate treatment showed no significant effect. Applying a developed mathematical model to results of 83 soil samples showed a very good agreement of the predicted values with the experimental values of available In. The multiple linear regression revealed that pH, CaCO₃ and organic matter content of the soils were the most important factors affecting In availability with R² value of 0.37**.

It could be concluded that absence of Zn from rhizo-sphere led to increasing total amino acids, organic acids and H ions released by plant roots and this caused an increase in the solubility of relatively insoluble sources of Zn. In addition, modeling Zn availability was done through mathematical and statistical equations which can predict amount of available Zn by means of some soil properties such as pH, CaCO₂, organic matter, clay content and phosphate.

CONTENTS

		·	
No.		F	age
140			
1.	TNTRODE	UCTION	•]
2.			• 3.
	2.1.	- rright of week evaluated of blank on the	
			• 3
		4 4 4-1-2 2214% SUU UNUSUIL ACIUS CONTONI	
			4
		n	• 4
		A 4 4 0 Decamaic actifs	, р
		:	
			- 8 . 11
	22-		₹
			1.3
		1lc of phosphate	
		0 0 E Clay content	
		o o o cation exchange capatity ***********************************	
		a a o Tataraction with Catlons **********	2 1
	2.3.	Possence of different plant species to 20	
		- fmv+ilizmv	21
	2.4.	Evaluation of nutrient availability using	
	_,	mathematical and statistical MOGELS	24
		2 A 1 linear models	25
		2 4 2 Non-linear models	27
3.	MATERIA	ALC AND METHODS	30
	3.1.	post soundstee and the ability of Pidica to	
		tiliza insoluble sources of Zill **********	• 3u
		3.1.1. Root exudates of corn and tomato	
		plants in relation to Zn nutrition using	20
		split medium technique	• 30
		3.1.2. Utilization of inorganic sources of	. 34
		zinc by corn and tomato plants roots	• 34
		3.1.3 Root exudates of corn and wheat plants	
		in relation to Zn nutrition using	a .
		nutrient solution culture technique	• 35
		3.1.3.1. Effect of collected corn and	
		wheat root exudates on the	
		solubility of zinc oxides	3745
	3.2.	Zinc adsorption and desorption by soil clays	• 40
	3.3.	Derivation of a mathematical model character-	
		izing zinc extractability from sand treated	. 48
		with CaCOs, clay and phosphate	. 40
		3.3.1. Experimental	48

No.	Page
No.	• 49
3.3.2. Mathematical methodology	
variable of the suggested	
equations to the experimental data	
modelavailability and	
its level in plant of soil and plant	
	· - 52
	- nn
4.1. Root exudates using spirit mediam rowth and	- 56
plants	- 56
and organic acids content of the root	- 58
a .w.ii.mation of inordanic in Sources by	
corn and tomato plant roots	• 64 • 65
4.1.3.2. In concentration and total uptake	• /2
4.1.3.3. The solubilized Zn in growth medium solution	- 82
4.2. Effect of Zn nutrition on growth and root exudates of corn and wheat plants using	
nutrient solution technique	
plant	- 88
of root exudates	- 90
solubility of zinc oxide	9 7
	• 100
4.3.1. Zinc adsorption	• 100
4.3.1.1. Effect of pH	- i02
4.3.1.2. Effect of CaCO ₃	- 106
4.3.1.3.Effect of phosphate	• 108
affected by pH, CaCO _B and phosphate treatments	. 111
constructed artificial soil as affected by	
CaCO ₃ , clay and phosphate	. 11 5
$7n \approx f(r)$	113

1			
4	7	٠,	
	١		

			Page	
No.			_	_
		4.4.1.1. Zn = f (C,Cl) _p	,	19 23 24
	4.5.	Zinc level in plant as affected by zinc availability in soil 4.5.1. Effect of soil properties on Zn availability	1	24 24
		11 in plant		129 132
5.	SUMMAR'			138
	REFERE	NCES	1	156
	APPEI	NDIX a		58

LIST OF TABLES

No.		Page
1.	Physical and chemical properties of the collected soil samples from corn, tomato, cotton and citrus areas	53
2.	Dry weight of corn plant parts as affected by Zn addition (means of 4 replicates \pm s.d.)	. 57
з.	Dry weight of tomato plant parts as affected by Zn addition (means of 4 replicates \pm s.d.)	. 57
4.	Zinc concentration in the dry matter of corn plant parts as affected by Zn addition (means of 4 replicates <u>t</u> s.d.)	- . 59
5.	Zinc concentration in the dry matter of tomato plant parts as affected by In addition (means of 4 replicates <u>+</u> s.d.)	. 59
6.	Total amounts of amino acids and organic acids in the root exudates of Zn-deficient and non-deficient corn and tomato plants	6 1
7.	pH and net release of H ⁺ per g dry weight root in the root exudates of Zn-deficient and non-deficient corn and tomato plants. (Means of 4 replicates ± s.d.)	61
8.	Dry weight of the different corn plant parts as affected by applied In sources (means of 3 replicates)	. 66
9.	Effect of different Zn sources on dry weight, Zn concentration and total uptake of corn plants arranged in a descending order of response for each parameter	
10.	Dry weight of the different tomato plant parts as affected by applied Zn sources (means of 3 replicates)	70
11.	Effect of different Zn sources on dry weight, Zn concentration and total uptake of corn plants arranged in a descending order of response for each parameter	70
12.	Dry weight of the different corn plant parts as affected by applied In sources (means of 3 replic-	, 0
	ates)	71

		Pag
No.		, 49
13.	Dry weight of the different tomato plant parts as affected by applied In sources (means of 3 replicates)	73
14.	Total uptake of In in the different corn plant parts as affected by In sources (means of 3 replicates)	79
15.	Total uptake of Zn in the different tomato plant parts as affected by applied Zn sources (means of 3 replicates)	79
16.	pH values and soluble Zn content of the CaCl ₂ solution as affected by applied Zn sources with and without corn plants (means of 3 replicates)	83
17.	pH values and soluble Zn content of the CaCl2 sol- ution as affected by applied Zn sources with and without tomato plants (means of 3 replicates)	83
18.	Effect of corn and tomato roots on pH and solubil- ized Zn in CaCl ₂ solution arranged in descending order of treatments magnitude	87
19.	Root and shoot dry weights and Zn concentration of corn and wheat plants as affected by Zn addition (means of 4 replicates <u>+</u> s.d.)	89
20.	Amino acids content in the root exudates of Zn- deficient and non-deficient corn plants. (means of 4 replicates <u>+</u> s.d.)	91
21.	Amino acids content in the root exudates of Zn- deficient and non-deficient wheat plants. (means of 4 replicates ± s.d.)	92
22.	Organic acids content in the root exudates of Zn- deficient and non-deficient corn plants. (means of 4 replicates ± s.d.)	95
23.	Organic acids content in the root exudates of Zn- deficient and non-deficient wheat plants. (means of 4 replicates ± s.d.)	95
24.	pH and the net release of H+ per g dry weight root in the root exudates of Zn-deficient and nondeficient corn and wheat plants. (Means of 4 replicates	98
	4 8 4 1	, 0

		Page
No.	Solubilization of ZnO as affected by corn and wheat	
25.	t s.d.)	
26.	Values of equilibrium Zn concentration,c(ug/ml) and the corresponding c/x/m values (Zn ug.ml='/Zn mg.g=' clay) of the adsorption isotherm as affected by pH treatments	103
27.	Langmuir coefficients for Zn adsorption by soil clays as affected by pH, CaCO, and phosphate treatments and values of correlation coefficients obtained	104
28.	Values of equilibrium Zn concentration, c (ug/ml) and the corresponding c/x/m values (Zn ug.ml ⁻¹ /Zn mg.g ⁻¹ clay) of the adsorption isotherm as affected by CaCO ₃ treatments	
29.	Values of equilibrium Zn concentration, c(ug/ml) and the corresponding c/x/m values (Zn ug.ml='/Zn mg.g- clay) of the adsorption isotherm as affected by phosphate treatments	
30.	Mean values of Zn adsorbed, Zn(ad), mg/g clay as affected by pH, CaCOs and phosphate treatments	109
31.	Analysis of variance for treatments effects on adsorbed Zn, mg/g clay	112
32.	<pre>Zn desorbed (mg Zn desorbed / 100 mg Zn adsorbed) as affected by pH, CaCO₂ and phosphate added to soil clays (means of 3 replicates)</pre>	113
33.	DTPA-extractable Zn,ug/g from sand treated with CaCO3, clay and phosphate (means of 3 replicates)	114
34.	Analysis of variance for treatments effects on Zn extractability	117
35.	Values of simple correlation coefficients for DTPA-extractable Zn versus soil properties	127
36.	Multiple linear models for the DTPA-extractable Zn as affected by soil properties	127
37.	Concentration of Zn of the collected corn, tomato,	136

LIST OF FIGURES

		Page
No.		
1 -	Schematic representation for the split medium technique used	_ 31
2.	Schematic representation for the nutrient solution culture used	36
3.	Amino Acid Analyzer-Chromatogram of standard acids mixture used for calibration	amino _ 40
4.	GLC-Chromatogram of standard organic acids mixture used for calibration	- 43
5.	Effect of In sources treatments on dry weight of the different corn plant parts	. 67
6.	Effect of In sources treatments on dry weight of the different tomato plant parts	_
7.	Effect of In sources treatments on In concentration of the different corn plant parts	n _,
e.	Effect of In sources treatments on In concentration of the different tomato plant parts	n 77
9.	Effect of Zn sources treatments on total Zn uptake by the different corn plant parts	
10.	Effect of Zn sources treatments on total Zn uptake by the different tomato plant parts	. 81
11.	Langmuir isotherm for soil clays	. 101
12.	Langmuir isotherms for soil clays as affected by p	н • 101
13.	Langmuir isotherms for soil clays as affected by CaCOs treatments	. 101
14.	Langmuir isotherms for soil clays as affected by phosphate treatments	. 101
15.	Zinc adsorbed, mg/g clay as affected by pH, $CaCD_3$ and phosphate treatments	. 110
16.	DTPA-extractable Zn from sand treated with CaCO _B , clay and phosphate	. 118