
HADRON INTERACTIONS AT HIGH ENERGIES AND THEIR RELATIONSHIP TO SOME COSMIC RAY PHENOMENA

1 1 m

THESIS

Submitted in Partial Fulfilment of The Requirements for M. Sc. Degree in Physics

To
The University College for Girls
Ain Shams University
Cairo, A. R. E.

TAREK MOHAMED ABDEL HAMEED AWWAD

(B. Sc.)

25 962

1987

NOTE

Besides the work carried out in this thesis the candidate has attended the following postgraduate courses:

- 1- Quantum Mechanics
- 2- Electronics
- 3- Solid State Theory
- 4- Radiation Physics
- 5- Advanced Quantum Mechanics (Special Course)

He has successfully passed a written examination in these courses in partial fulfilment for the degree of Master of Science.

> Approved Head of Physics Dept.

M.A Kend Prof. Dr. M.A Kenawy

بسم الله الرحن الرمن المعنى ا

ACKNOWLEDGEMENT

The author is greately indekted to Professor Dr. M.A. Kenawy, Head of Physics Department, University College for Girls, Ain Shams University, for his kind supervision, continuous guidance and valuable advice during the period of this work.

The author wishes to express his sincere gratitude to Professor Dr. Amn Goned, Department of Physics, Faculty of Science, Ain Shams University for suggesting the problem, kind supervision and valuable discussions throughout this work.

Thanks are also due to all colleagues of the Scientific Computing Centre, Ain Shams University, as well as those of the Cosmic Ray Group, Physics Department, Faculty of Science, for the facilities they provided.

CONT	ENTS
------	------

CONTENTS	Page
SUMMARY	i
INTRODUCTION	1
CHAPTER 1. HIGH ENERGY HADRONIC REACTIONS	6
1. Introduction	6
2. Kinematics of Nucleon-Nucleon Interactions	7
2.1. Lorentz transformations of energies and momenta.	7
2.2. Transformations with the rapidity variable (y)	12
2.3. Energies and angles of outgoing particles	15
2.4. Transverse momentum	16
3. Transformations with the Pseudorapidity Variable $\{\eta\}$.	17
4. The Feynman Variable x	19
5. Multiplicity of Secondaries	26
6. One-Particle Inclusive Reactions	27
6.1. Definitions	31
6.2. Transverse-momentum distribution	32
6.3. Longitudinal behaviour	33
7. Proton-antiproton Collisions in the CERN SPS Collider	36
8. Scaling Violations	
8.1. Observed violations of scaling at ISR and SPS	
energies	38
8.2. The CKP model	47
8.3. The high multiplicity (HM) model	49
CHAPTER 2. DERIVATION OF INCLUSIVE SPECTRA OF PIONS FROM	
ACCELERATOR DATA	50
1. Introduction	50 -
2. Analysis of Experimental Data	51
2.1. The experimental accelerator data	51
2.2. Binning of data into p_{η} -x grids	51
3. Fits of the Compiled Data for the x-Distributions	52
3.1. Explicit formula for the invariant cross section	
of charged pions	52
3.2. Mathematical formulation of the two-dimensional	
fitting. Central Library - Ain Shams University	57

	3.3.	Description of the designed non-linear least	
		square fit program	58
4.	Resul	lts for Single Particle Distributions	61
	4.1.	Input and output fitting parameters	61
	4.2.	Transverse-momentum distributions of charged	
		pions	65
CHAPT	rer 3.	DERIVATION OF ANGULAR DISTRIBUTION AND DEGREE	
		OF SCALING VIOLATION IN HADRON INCLUSIVE REAC-	
		TIONS	75
1.	Intro	oduction	75
2.	Deter	rmination of the Angular Distributions of Charged	
	Part	icles	77
	2.1.	Pseudorapidity distributions of charged pions	
		at ISR energies	77
	2.2.	Contribution of charged particles other than	
		pions	78
	2.3.	η -distributions of charged particles at SPS	
		energies	80
3.	Para	metrization of Possible Scale Breaking	82
	3.1.	General	82
	3.2.	Models describing the energy spectrum of second-	
		ary particles	83
	3.3.	Statistical approach to scaling in inclusive	
		reactions	90
4.	Analy	ysis of Scaling Violations at SPS Energies	96
	4.1.	Variation of mean transverse momentum with prim-	
		ary energy	96
	4.2.	Calculation of the degree of scaling violation	98
CHAPT	EER 4.	. RELEVANCE OF SCALING VIOLATION MODELS TO COSMIC	
		RAY MUONS AND PRIMARY COMPOSITION	105
1.	Intro	oduction	
		lopment of Pion Cascades Produced by Primary	
		-	107
		Central Library - Ain Shams University	, .,

2.1. The diffusion equations for plons produced in	
p and π-nucleus interactions	108
2.2. Solution at high energy	112
3. Successive Generations of Pions in A Multifireball	
Model	114
4. Calculation of the Total Number of Muons in a Shower	
with Unique Primary Energy	118
4.1. Muon spectrum in the multifireball model	118
4.2. Muon spectrum in the CKP model	122
4.3. Muon spectrum in the scaling violation (SV) Model	124
4.4. Muon spectrum in the scaling model	124
5. Results on the Total Number of Muons in EAS	127
6. Calculation of Muon Flux at Sea-Level	128
6.1. Contribution of protons to muon flux	133
6.2. Contribution of heavier nuclei to muon flux	134
7. Trial Primary Spectrum	135
8. Factors Contributing to the Muon Intensity at Sea-	
Level	138
8.1. Hadron-Hadron rising cross-section	139
8.2. Contribution of Kaons	140
9. Results of the Combination of Interaction Models with	
Mass Composition for the Muon Spectrum	142
9.1. Predictions with possible domination of primary	
Fe nuclei	143
9.2. Predictions of scaling violation model with a	
new iron-spectrum	146
10. Discussion and Conclusions	150
APPENDIX 1	
APPENDIX 2	
APPENDIX 3	155
REFERENCES	156
BARTA CUMANU	

SUMMARY

SUMMARY

A theoretical study has been made of high energy hadronhadron interactions using results from recent accelerator experiments and the consequences to problems in cosmic ray physics.

The study is concerned with two main subjects; the first is the derivation of the degree of scaling violation in hadron inclusive reactions at accelerator energies up to $\sqrt{s} = 540$ GeV and the second deals with the derivation of cosmic ray muon spectra and the composition of primaries if scaling violation features are extrapolated to the much high cosmic ray energies.

An extensive amount of data on the inclusive cross section for charged pion production in pp interactions has been analysed in the centre-of-mass energy range 23 $<\sqrt{s}<$ 53 GeV in the x-p_T plane, where x is the Feynman scaling variable and p_T is the transverse momentum. The main results are as follows:

1) In the kinematical region 0 \langle x \langle 1.0 and $p_{\rm T}^{}$ \langle 1.0 GeV, the invariant cross section can be well described by the formula :

$$E \frac{d^3\sigma}{dp^3} (x,p_T) = a_1 (1-x)^{a_2(p_T)} \exp \{-(a_3p_T e^{-a_4x})\}$$

where a₁, a₂, a and a are parameters. Central Library - Ain Shams University 2) The above proposed formula indicates scaling violations since introducing the parameter a_4 prevents factorization of the cross-section into separate functions of x and p_{ϕ} .

In order to determine the degree of scaling violation for charged particle production in hadron inclusive reactions, the pseudo-rapidity distributions for the produced particles are derived for energies \sqrt{s} < 53 GeV as well as for the recent results from the SPS collider at the much higher energy \sqrt{s} = 540 GeV. The main results are as follows:

 The particle spectra can be described by a scale breaking formula

$$\frac{E}{\sigma_{\rm t}} \, \frac{{\rm d}^2 \sigma}{{\rm d} p_{\rm t}^2 {\rm d} p_{\rm T}^2} = \left(\frac{S}{S_{\rm o}} \right)^\alpha {\rm f} \left({\rm x} \left(\frac{S}{S_{\rm o}} \right)^\alpha \, , \, \, p_{\rm T} \right)$$

where S_0 is a datum energy and (α) is a scale breaking parameter.

- 2) The scale breaking parameter (α) derived from the pseudo-rapidity distributions of all charged particles using a constant inelasticity is found to have a mean value α = 0.101±0.005 over the energy range considered. Such value may be considered as a lower limit to the breakdown of Feynman scaling.
- 3) Another evidence for scaling violation is obtained from a slow variation of mean transverse momentum with energy in the form

$$\langle p_m \rangle = 0.231 + 0.03 \ell n \sqrt{s}$$

Central Library - Ain Shams University

In order to study the consequences of the above break-down of scaling to cosmic ray phenomena, a detailed mathematical model has been put forward to describe the muon cascades initiated in the atmosphere by primary nuclei. The muon spectrum at sea level has been derived in the frame of multifireball production for three different models, namely: strict Feynman scaling, scaling violation model, and a conventional statistical model. The rise of pp cross section with energy as well as the contribution of kaons have been taken into consideration.

From predictions of the scaling violation model and a normal composition for primary nuclei, we derive a new estimate for the spectrum of Fe nuclei above 10^{13} eV in the form $J_{Fe}(E_N)dE = 6.569 \times 10^{-4} \ E_N^{-2.406} (nuclei, cm^{-2}s^{-1}sr^{-1}(\frac{GeV}{nucleon})^{-1})$

with energy E_N in GeV/nucleon. This result shows that if the breakdown of scaling observed at accelerator energies continues to cosmic ray energies (>10¹³ eV/nucleon) then the iron spectrum should be much steeper than that observed at low energies (~10¹¹ eV/nucleon). This means that the conventional idea of a possible dominance of Fe nuclei in the primary beam at high energies has to be excluded and that the composition around 10^{15} eV/nucleon is in fact not much different from that at low energies.

INTRODUCTION

INTRODUCTION

Recently, the study of hadron interactions at extremely high energies has become a subject of great interest both in problems concerning the substructure of hadrons (i.e. Quarks and gluons) and in those problems relevant to the production of cosmic ray particles in the atmosphere and the mass composition of primary cosmic rays. The nature of ultrahigh energy hadronic reactions has now been enhanced by the great extension in accelerator energies made available by the CERN Intersecting Storage Rings (ISR) (20-60 GeV c.o.m. energy), the proton synchrotron at FNAL (200-400 GeV protons or mesons on a stationary target), the pp colliders (SPS) at CERN (\sqrt{S} = 540 GeV) as well as the most recent pp experiment at CERN (SPO) in which the c.o.m. energy \sqrt{S} reaches 900 GeV (e.g. Rushbrooke, 1985).

Two problems are in fact fundamental in the study of cosmic rays as a high energy physics subject. The first is the high energy interaction model which best describes hadrons' spectra while the second deals with the spectrum and composition of cosmic ray primaries at energies unattainable by direct measurements. The study of the production and propagation of cosmic ray muons in the atmosphere is considered as one of the important tests of the combination of an interaction model with a certain primary mass composition.

Muons are produced mainly as a result of the decay of charged pions and Kaons which are the products of the interactions

of primary cosmic ray nuclei with air nuclei in the atmosphere. A variety of experimental techniques are now available for measuring muon intensities at sea level, under sea water and underground in the TeV energy region and at different angles from the vertical (e.g. magnetic spectrograph, burst γ -cascades, etc).

Conventionally, two interaction models have always been competing for the interpretation of cosmic ray high energy phenomena namely the CKP and Feynman's scaling models (e.g. Goned et al. 1975). Recently, however, the possibility of a significant breakdown in Feynman scaling has opened a new window onto the subject, (e.g. Wdowczyk and Wolfendale, 1984, 1987). Such scale breaking model carries features from each of the first two models and should have important consequences as to the problem of mass composition of primary cosmic rays at very high energies.

The CKP model of Cocconi et al. (1961) is based on the older two fireball model of Ciok et al (1958) and Cocconi (1958). This model is characterized by an energy distribution for secondary pions consistent with a statistical type emission and a dependence of pion (kaon) multiplicity $n_{\rm g}$ on primary energy $E_{\rm p}$ as $n_{\rm g} \propto E_{\rm p}^{\frac{1}{4}}$.

On the other hand, accelerator results in the late 1960s

led to the so called "scaling" model of Feynman (1969) in

Central Library - Ain Shams University