

THE EFFECT OF WINGLET ON WING PERFORMANCE

By

Eslam Mansour Mohamed Abo-Seria

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Aerospace Engineering

THE EFFECT OF WINGLET ON WING PERFORMANCE

By

Eslam Mansour Mohamed Abo-Seria

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Aerospace Engineering

Under the Supervision of

Prof. Dr. Mohamed Madbouli Abdelrahman

Professor of Aerospace Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

THE EFFECT OF WINGLET ON WING PERFORMANCE

By

Eslam Mansour Mohamed Abo-Seria

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Aerospace Engineering

Approved by the Examining Committee:

Prof. Dr. Mohamed Madbouli Abdelrahman, Thesis Main Advisor Professor of Aerospace Department, Faculty of Engineering, Cairo University

Prof. Dr. Galal Bahgat Salem, Internal Examiner

Professor of Aerospace Department, Faculty of Engineering, Cairo University

Prof. Dr. Osama E. Abdellatif, External Examiner Professor of Mechanical Department, Faculty of Engineering, Shoubra, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer Name: Eslam Mansour Mohamed Abo-Seria

Date of Birth: 24 / 2 / 1987

Nationality: Egyptian

E-mail: Eslam_man@hotmail.com

Phone: +20 12 89498683

Address: Flat 205, Building 23, Block no. 28012, Third District, Obour

City, Qalubia, Egypt

Registration Date: 1 / 10 / 2010

Awarding Date: 2016

Degree: Master of Science

Department: Aerospace Engineering

Supervisors: Prof. Dr. Mohamed Madbouli Abdelrahman

Examiners: Prof. Dr. Osama E. Abdellatif, External Examiner

Prof. Dr. Galal Bahgat Salem, Internal Examiner

Prof. Dr. Mohamed Madbouli Abdelrahman, Thesis Main Advisor

Thesis Title: The Effect of Winglet on Wing Performance

Key Words: Winglet, Wing sails, Wingtip devices

Summary: This work aims to increase wing aerodynamic performance by

reducing the induced drag by using the winglet, hence increase airplane range. This is done by study the effect of different winglet geometric parameters on wing aerodynamic performance. Then generate the optimum winglet which gives maximum lift to

drag ratio.

To reach this, two optimization and parametric studies on four geometric parameters of winglet were conducted. The first was low fidelity using Matlab code to solve potential flow, and the second was high fidelity using commercial code ANSYS Fluent to solve real flow. The low fidelity optimization was used to provide an initial guess to start the high fidelity optimization from it. The winglet four geometric parameters are: the cant angle, the sitting angle, the sweep back angle, and the tapered ratio.

Acknowledgment

I have great appreciation to my supervisor Prof. Dr. Mohamed Madbouli Abdelrahman for his technical advices, continuous support and deep revising that added a lot to the value of this work. I wish him the very best in both professional and personal life.

I would like to thank all my family, my father, mother, and brother for their encouragement and help during working on this thesis. I wish them the best in their life.

I wish to especially thank my wife for her contributions in running the solvers and recording outputs, the thing that saved a lot of time for me.

Eslam Man Aug. 2016

Table of Contents

A (CKNO	OWLEDGMENT	I
TA	BLE	OF CONTENTS	II
LI	ST O	F TABLES	IV
LI	ST O	F FIGURES	V
SY	MBO	OLS AND NOMENCLATURES	X
	Latin	n Symbols	X
	Gree	ek Symbols	Xl
	Abb	previation	Xl
AI	BSTR	ACT	XII
1	INT	RODUCTION AND LITERATURE REVIEW	1
	1.1	Definition of Winglet	1
	1.2	Objective of Wingtip Devices	1
	1.3	Theory of Work	2
	1.4	Historical Review	2
	1.4	Types of Wingtip Devices	3
	1.5	Pros and Cones	7
	1.6	Previous studies of winglet Geometric Parameters	7
	1.7	Thesis Objective	10
2	PLA	ANAR WING MODEL	12
	2.1	Experimental Test	12
	2.2	Numerical Model of Potential Flow	14
3	VAI	LIDATION OF NUMERICAL MODELS	25
	3.1	Validation of Potential Flow Model	25

	3.2	Validation of Real Flow Model	25
	3.3	Calibration of Real Flow Model	27
4	NON	N PLANAR WING MODEL	30
	4.1	Conceptual Design of Winglet	30
5	ОРТ	TIMIZATION AND PARAMETRIC STUDY	34
	5.1	Low Fidelity Optimization	34
	5.2	Low Fidelity Parametric Study	38
	5.3	High Fidelity Optimization	46
	5.4	High Fidelity Parametric Study	50
	5.5	Effect of Winglet on Flow Field	57
CC	NCL	USION	67
FU	TUR	E WORK	68
RE	FER	ENCES	69
غص	الملذ		

List of Tables

Table 1: Go	eometric characteristics of the experimentally tested wing [1]12
	Experimental results of the tested wing at M=0.7 and Reynolds number 9×10^6 [1]
Table 3: Al	NSYS Fluent case setup
Table 4: Ro	elative winglet to wing geometric characteristics for modern jet transporters.
Table 5: Re	elative geometric characteristics of the designed winglet
Table 6: Go	eometric characteristics of the designed winglet32
de an	Resulted lift to induced drag ratio from the optimization study at AOA 5 agree, the maximum is marked by the red cell. It presents the sweep back agle at the top, the sitting angle on the right, the cant angle on the left, and the pered ratio at the bottom
at sw	AOA 5 degree, the maximum is marked by the red cell. It presents the veep back angle at the top, the sitting angle on the right, the cant angle on the ft, and the tapered ratio at the bottom

List of Figures

Fig. 1: Force analysis on the winglet. Adapted from [15]
Fig. 2: Lanchester end plate (from Lanchester's Aerodynamics 1907)
Fig. 3: (A) Whitcomp winglet [9], (B) simple winglet [23], (C) blended winglet (Louis B. Gratzer, U.S. Patent US5348253 A, 1994), and (D) split tip winglet (Louis B. Gratzer, U.S. Patent EP2718182 A1, 2014).
Fig. 4: Wingtip fence.
Fig. 5: Wingtip sails (Multi-winglet) (Slotted tip) [8]
Fig. 6: Wing grid (Ulrich La Roche, U.S. Patent US5823480 A, 1998)
Fig. 7: (A) Spiroid wingtip (Louis B. Gratzer, U.S. Patent US5102068 A, 1992), and (B) C-wingtip.
Fig. 8: The cant angle.
Fig. 9: Top view of the wing showing the sitting angle of the winglet
Fig. 10: Top view of the tested wing (dimensions in meter) [1]
Fig. 11: Experimental lift coefficient vs. angle of attack (adapted from [1])13
Fig. 12: Experimental drag coefficient vs. angle of attack (adapted from [1])14
Fig. 13: Experimental moment coefficient about quarter mean aerodynamic chord vs angle of attack (adapted from [1])
Fig. 14: Input geometry to the Matlab code.
Fig. 15: Converging of the solution (lift coefficient) with mesh size (Panels on the half wing)
Fig. 16: Flow chart of the simulation process.
Fig. 17: Boundary condition on the domain around the simulated wing
Fig. 18: Domain dimensions from side view
Fig. 19: Zoom in to the wall-adjacent cell of the mesh[14]
Fig. 20: Contour of mesh skewness
Fig. 21: Overview of the mesh on symmetric side

Fig. 22: The two types of mesh over the wing
Fig. 23: Converging of the solution (drag value) with mesh size in million22
Fig. 24: Comparison between experimental lift coefficient on the basic wing [1] and lift coefficient calculated by panel method
Fig. 25: Comparison between lift of three different turbulent models and the experimental lift [1] with angle of attack for the basic planar wing
Fig. 26: Comparison between drag of three different turbulent models and the experimental drag [1] with angle of attack for the basic planar wing26
Fig. 27: Comparison between pitching moment about quarter mean aerodynamic chord of the three different turbulent models and the experimental moment [1] with angle of attack for the basic planar wing
Fig. 28: Calibrated lift coefficient vs. angle of attack. Calibration ratio = free stream density (1.0045) New reference density $(1.17) \times \text{calculated lift coefficient by Spalart} - \text{Allmaras} \dots 28$
Fig. 29: Calibrated drag coefficient vs. angle of attack. Calibration ratio = free stream density (1.0045)New reference density (1.17) × calculated drag coefficient by Spalart – Allmaras
Fig. 30: Calibrated pitching moment coefficient vs. angle of attack. Calibration ratio = free stream density (1.0045)New reference density (1.17) × calculated moment coefficient by Spalart – Allmaras
Fig. 31: Three views of an airplane showing the geometrical characteristics of the half wing and the winglet
Fig. 32: Winglet span to basic wing semi-span (<i>bwl12bbw</i>) vs. airplane standard range
Fig. 33: Three views of the winglet geometry (dimensions in meter)33
Fig. 34: Cant angle range from 20 degree to 80 degree by step 20 degree35
Fig. 35: Positive direction of sitting angle about its measuring axis35
Fig. 36: Sitting angle range; from 4 degree to 12 degree by step 2 degree36
Fig. 37: Sweep back angle range; from -10 degree to 40 degree by step 10 degree36
Fig. 38: Tapered ratio range; From 0.25 to 0.45 by step 0.1
Fig. 39: Effect of cant angle for different sitting angles at sweep back angle 0 degree, tapered ratio 0.25, and AOA 5 degree

Fig. 40: Effect of cant angle for different sweep back angles at sitting angle 4 degree tapered ratio 0.25, and AOA 5 degree
Fig. 41: Effect of cant angle for different sweep back angles at sitting angle 6 degree tapered ratio 0.25, and AOA 5 degree
Fig. 42: Effect of cant angle for different tapered ratios at sitting angle 4 degree, sweep back angle 0 degree and AOA 5 degree
Fig. 43: Effect of sitting angle for different cant angles at sweep back angle 0 degree tapered ratio 0.25 and AOA 5 degree
Fig. 44: Effect of sitting angle for different cant angles at sweep back angle20 degree tapered ratio 0.45 and AOA 5 degree
Fig. 45: Effect of sitting angle for different sweep back angles at cant angle 60 degree tapered ratio 0.35 and AOA 5 degree
Fig. 46: Effect of sitting angle for different tapered ratios at cant angle 80 degree sweep back angle 0degree and AOA 5 degree
Fig. 47: Effect of sweep back angle for different cant angles at sitting angle 4 degree tapered ratio 0.25 and AOA 5 degree
Fig. 48: Effect of sweep back angle for different tapered ratios at cant angle 20 degree sitting angle 8 degree and AOA 5 degree
Fig. 49: Effect of tapered ratio for different cant angles at sitting angle 4 degree, sweep back angle -10 degree and AOA 5 degree
Fig. 50: Effect of tapered ratio for different sitting angles at cant angle 60 degree sweep back angle40 degree and AOA 5 degree
Fig. 51: Effect of tapered ratio for different sweep back angles at cant angle 40 degree sitting angle 6 degree and AOA 5 degree
Fig. 52 Front view of the wing showing the three selected cant angels of the wingle (70, 80, and 90 degree)
Fig. 53: Top view of the wing showing the three selected sitting angles of the wingle (5, 6, and 7 degree)
Fig. 54: Side view of the wing showing the three selected sweep back angles of the winglet (0, 10, and 20 degree)
Fig. 55: Side view of the wing showing the three selected tapered ratios of the wingle (0.15, 0.25, and 0.35), (dimensions in meter)
Fig. 56: Effect of cant angle for different sitting angles at sweep back angle 0 degree tapered ratio 0.15, and AOA 5 degree