111014

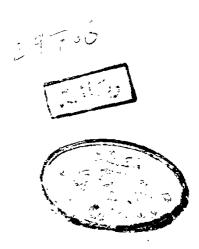
### MUTAGENIC EFFECT OF SOME TRANQUILIZERS IN DROSOPHILA

BY

#### EKRAM SALAH EL DIN AHMED

A thesis submitted in partial fulfillment

of


the requirements for the degree of

591.15 E.C MASTER OF SCIENCE

In

Agriculture (Genetics)

Department of Genetics
Faculty of Agriculture
Ain Shams University



(1989)

4

#### APPROVAL SHEET

# STUDY OF THE MUTAGENIC EFFECT OF SOME TRANQUILIZERS ON DROSOPHILA

Ву

EKRAM SALAH EL DIN AHMED

B.Sc. Agric. (Genetics), Ain Shams University, 1976

This thesis for M.Sc. degree has been approved by:

Prof. Dr.: Hamed Abdel Maksoad Nafei
Prof. of Genetics.

H. Nafu

Prof. Dr.: Ramzy Ali El Adawy
Prof. of Genetics

Deur

Prof. Dr.: Ali Zein El-Abidin Salam
Prof. and Head of
Genetics Department.

A.Z.ES-Abidin Salam

Date of examination: -1-7-1-10-1-19-8-9-----



## STUDY OF THE MUTAGENIC EFFECT OF SOME TRANQUILIZERS ON DROSOPHILA

ВУ

EKRAM SALAH EL-DIN AHMED B.Sc.1976

Under the Supervision of: Prof. Dr. A.Z. EL-ABIDIN SALAM.

Prof. of Genetics

Prof. Dr. H.A. de Hondt

Prof. of Genetics

#### ABSTRACT

The mutagenic potentialities of two benzodiazepine tranquilizers lorazepam and diazepam were tested in  $\underline{D}$ .  $\underline{melano\,gaster}$  using two test systems, the sex-linked recessive lethals test (SLRL) and the estimation of the activities of the two enzymes cholinesterase (ChE) and aliesterase (ALiE). Kaha male files of  $\underline{Drosophila}$   $\underline{melanogaster}$  were reared on a medium containing two concentrations of each of the two drugs, 5 and 10  $\underline{mg/100}$   $\underline{ml}$   $\underline{medium}$ , and screened for sex-linked recessive lethals.

The results indicated that significant numbers of recessive le'hals were induced in Drosophila in all stages of spermatogenesis except in spermatozoa stage at the two doses of each of the two drugs, indicating that lorazepam (ativan) and diazepam (valinil) are capable of inducins sex-linked recessive lethal mutations in <u>Drosophila</u> melanogaster. Meanwhile, the two drugs showed a mutagenic effect on the genetic background of each of ChE and AliE, which proves the mutagenic potentiality of the two drugs.

#### ACKNOWLEDGEMENT

The writer wishes to express her sincere gratitude to Professor Dr. A.Z. EL ABIDIN SALAM, head of the Department of Genetics, Faculty of Agriculture, Ain Shams University, and Professor Dr. H.A. de-Hondt, Cell Biology Laboratory, National Research Centre, for supervising this work and for their constructive criticism during the progress of the study.

Thanks are also due to Dr. MARY THERASE IBRAHIM Lecturer of Genetics, Cell Biology Laboratory, National Research Centre, for her help offered during the progress of this study.

Thanks are also extended to the spirit of the late Lecturer of Genetics, Dr. ZENAB A. EL HADIDY, for her help throughout the experiments of this study.

Finally, the writer acknowledges the guidance by the staff members of the Genetics Department Faculty of Agric ulture, Ain Shams University, and the members of the Cell Biology Laboratory, National Research Centre.

#### CONTENTS

|      |                                              | Page |
|------|----------------------------------------------|------|
| ABST | RACT                                         |      |
| ACKN | OWLEDGEMENT                                  |      |
| LIST | OF TABLES                                    |      |
| LIST | OF FIGURES                                   |      |
| 1.   | INTRODUCTION                                 | 1    |
| 2.   | REVIEW OF LITERATURE                         | 3    |
|      | 2.1. Mutagenic potentiality of tranquilizers | 3    |
|      | 2.1.1. Mutagenic effects of tranquilizers in |      |
|      | Drosophila                                   | 3    |
|      | 2.1.2. Mutagenic effects of tranquilizers in |      |
|      | humans and animals                           | 4    |
|      | 2.1.3. Mutagenic effects of tranquilizers in |      |
|      | plants                                       | 6    |
|      | 2.1.4. Mutagenic effects of tranquilizers in |      |
|      | microorganisms                               | 7    |
|      | 2.2. Esterases                               | 8    |
|      | 2.2.1. Transmission and specificity          | -    |
|      | cholinesterases and aliesterases             | q    |
|      | 2.2.2. Effect of mutation on enzyme          | J    |
|      | activities                                   | 9    |
|      | 2.2.3. Interactions between tranquilizers    | ,    |
|      | and anzyma activities                        |      |

|    |                                                | Pag |
|----|------------------------------------------------|-----|
| 3. | MATERIAL AND METHODS                           | 12  |
|    | 3.1. Material                                  | 12  |
|    | 3.1.1. The natural population                  | 12  |
|    | 3.1.2. Muller-5(Basc) strain                   | 12  |
|    | 3.1.3. Reagents                                | 12  |
|    | 3.1.4. Tranquilizers                           | 14  |
|    | 3.1.4.1. Ativan                                | 14  |
|    | 3.1.4.2. Valinil                               | 15  |
|    | 3.2. Methods                                   | 15  |
|    | 3.2.1. Preparation of the chemicals            | 15  |
|    | 3.2.2. Sex-linked recessive lethals test       |     |
|    | (SLRL)                                         | 15  |
|    | 3.2.2.1. Treatment of males                    | 15  |
|    | 3.2.2.2. Detection of SLRL                     | 16  |
|    | 3.2.3. Enzyme estimation                       | 16  |
|    | 3.2.3.1. Standardization of                    |     |
|    | acetylcholine                                  | 17  |
|    | 3.2.3.2. Cholinesterase estimation,.           | 18  |
|    | 3.2.3.3. Calculations                          | 19  |
|    | 3.2.3.4. Aliesterase estimation                | 19  |
|    | 3.2.4. Statistical Analysis                    | 20  |
| 4. | RESULTS AND DISCUSSION                         | 21  |
|    | 4.1. Induction of sex-linked recessive lethals | 21  |
|    | . 4.1.1. Spontaneous SLRL                      | 21  |
|    | 4.1.2. Induction of SLRL by ativan             | 22  |
|    | 4.1.3. Induction of SLRL by valinil            | 27  |
|    | 4.1.4. Comparison between the mutagenic        |     |
|    | effects of ativan and valinil                  | 30  |

|   |     |        |                   |                                | <u>Page</u> |
|---|-----|--------|-------------------|--------------------------------|-------------|
| 4 | .2. | Mutage | nic effec         | t of tranquilizers on the      |             |
|   |     | enzyme | ac <b>t</b> iviti | es                             | 35          |
|   |     | 4.2.1. | Effect o          | f tranquilizers on ChE         |             |
|   |     |        | activity          | •••••••                        | 35          |
|   |     |        | 4.2.1.1.          | Effect of ativan on ChE        |             |
|   |     |        |                   | activity                       | 36          |
|   |     |        | 4.2.1.2.          | Effect of valinil on ChE       |             |
|   |     |        |                   | activity                       | 38          |
|   |     |        | 4.2.1.3.          | Comparison between the effects |             |
|   |     |        |                   | of ativan and valinil on ChE   |             |
|   |     |        |                   | activity                       | 40          |
|   |     | 4.2.2. | Effect o          | f tranqulizers on AliE         |             |
|   |     |        | ctivities         | 5                              | 44          |
|   |     |        | 4.2.2.1.          | Effect of ativan on AliE       |             |
|   |     |        |                   | activity                       | 45          |
|   |     |        | 4.2.2.2.          | Effect of valinil on AliE      |             |
|   |     |        |                   | āctivītý,                      | 47          |
|   |     |        |                   |                                |             |

4.2.2.3. Comparison between the

SUMMARY AND CONCLUSION.....

REFERENCES....

5.

б.

7.

ARABIC SUMMARY.

effects of ativan and

valinil on AliE activity....

49

53

56

#### LIST OF TABLES

|          |                                                                                                                                       | Page |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Table I: | Identification of sex-linked recessive lethals occurring spontaneously and after treatment with two concentrations of ativan in three |      |
|          | broods of <u>Drosophila melanogaster</u> .                                                                                            | 23   |
| Table II | : Identification of sex-linked recessive lethals occurring spontaneously and after treatment                                          |      |
|          | with two concentrations valinil in three broods of <u>Drosophila</u> melanogaster.                                                    | 28   |
| Table II | : Effect of ativan 5% and ativan 10% on ChE activity in three categories of <u>Drosophila</u> melanogaster.                           |      |
|          | meranogaster.                                                                                                                         | 37   |
| Table IV | : Effect of valinil 5% and valinil 10% on ChE activity in three categories of <u>Drosophila</u> melanogaster.                         | 20   |
|          |                                                                                                                                       | 39   |
| Table V  | : Effect of ativan 5% and ativan 10% on AliE activity in three categories of <u>Drosophila</u>                                        |      |
|          | melanogaster.                                                                                                                         | 46   |
| Table VI | : Effect of valinil 5% and Valinil 10% on AliE activity in three categories of Drosophila                                             |      |
|          | melanogaster.                                                                                                                         | 48 . |



#### LIST OF FIGURES

|           |                                                      | Page |
|-----------|------------------------------------------------------|------|
| Fig.(1)   | :Sex linked recessive lethals three broods of        |      |
|           | Drosophila melanogaster occurring spontaneously      |      |
|           | and after treatment with two concentrations of       |      |
|           | ativan.                                              | 24   |
|           |                                                      |      |
| Fig.(2)   | :Sex linked recessive lethals three broods of        |      |
|           | Drosophila melanogaster occurring spontaneously      |      |
|           | and after treatment with two concentrations of       |      |
|           | valinil.                                             | 29   |
|           |                                                      |      |
| Fig.(3):  | :Sex linked recessive lethals three broods of        |      |
|           | Drosophila melanogaster occurring spontaneously      |      |
|           | and after treatment with ativan 5% and valinil 5%.   | 31   |
|           |                                                      |      |
| Fig. (4): | Sex linked recessive lethals three broods of         |      |
|           | Drosophila melanogaster occurring spontaneously      |      |
|           | and after treatment with ativan 10% and valinil 10%. | 32   |
|           |                                                      |      |
| Fig. (5): | :Histogram representing the spontaneous and induced  |      |
|           | sex-linked recessive lethals in three broods of      |      |
|           | Drosophila melanogaster following treatment with     |      |
|           | ativan 5%, ativan 10% valinil 5% and valinil 10%.    | 33   |
|           |                                                      |      |
| Fig.(6):  | ChE activity in three categories of Drosophila       |      |
|           | melanogaster after treatment with different          |      |
|           | concentrations of ativan and valinil.                | 41   |
|           |                                                      |      |
| Fig.(7):  | Histogram representing the ChE activity in three     |      |
|           | categories of Drosophila melanogaster after          |      |
|           | treatment with different concentrations of ativan    |      |
|           | and valinil.                                         | 42   |
|           |                                                      |      |



|          |                                                                                                                                       | Page |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Fig.(8): | AliE activity in three categories of <u>Drosophila</u> melanogaster after treatment with different                                    |      |
|          | concentrations of ativan and valinil.                                                                                                 | 50   |
| Fig.(9): | Histogram representing the AliE activity in Three categories of Drosophila melanogaster after treatment with different concentrations |      |
|          | of ativan and valinil.                                                                                                                | 51   |

2

### INTRODUCTION

#### INTRODUCTION

Several reports indicate that many chemical pollutants which are widely spread in the environment, such as pesticides and drugs, are mutagenic in various test systems. These findings reflect an urgent need to draw more attention to the examination of the possible genetic hazards of such pollutants to public health and national biological resources. A number of psychoactive drugs are also suspected of inducing chromosome breakage (Morton et al., 1969).

Tranquilizers, a group of drugs introduced as psychotherapeutic agents, are being extensively used in human medicine to allay anxiety and muscle tension (Byck, 1974).

è

Since their introduction in medicine, a large number of individuals has been treated with these drugs. Some available reports reveal—the mutagenic potential of these drugs. The extensive increase in the use of tranquilizers belonging to the benzodiazepine group, which includes diazepam and lorazepam, subjected these drugs to special attention concerning their mutagenic potential.

Diazepam, the active ingredient of valinil, produced isochromatid and chromatid breaks in human leucocytes

(Morton et al., 1969) and sex-linked recessive lethals in Drosophila melanogaster (Susheela, 1975).

Lorazepam, the active ingredient of ativan, is useful in psychoneurotic states manifested by anxiety, tension, insomnia and fear. It was shown to have no toxic effect in human (McCurdy and Schatzberg, 1978).

The present study was carried out to evaluate the mutagenic response of ativan and valinil using two test system, the sex-linked recessive lethal test in <u>Drosophila melanogaster</u> which is known to be efficient in detecting chemical mutagens (Sobels and Vogel, 1976), and by estimating the effect of both drugs on the activity of cholinesterase and aliesterase, which is a recent tool in mutagenicity testing.

These two different mutagenicity tests were conducted in the present study to gain some insight into the genetic relation between the cholinesterase activity, aliesterase activity and the mutagenic effect of the benzodiazepine group, and also in order to compare the sensitivity of the two test systems.