

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER & MACHINES ENG. DEPT.

OPTIMAL INDUSTRIAL LOAD MANAGEMENT. DURING POWER SUPPLY DEFICIT

521-3192 H-A

Eng. Hoda Ahmed Mohamed Owes

A Thesis Submitted to Electrical Power and Machines Department of Ain Shams University for the Award of Doctor of Philosophy Degree in Electrical Engineering (Power and Machines)

Supervised By

Prof. Dr. Ahmed Rizk Abul' Wafa Electrical power & Machines Eng. Dept. Faculty of Engineering Ain Shams University.

Cairo 1997

EXAMINERS COMMITTEE

Name, Title, Affiliation

Signature

- Prof. Dr. Ahmed Risk Abul'Wafa
 Head, Electrical Power & Machines Eng. Dept.
 Faculty Of Engineering
 Ain Shams University, Egypt
 Supervisor
- 2- Prof. Dr. Mohamed EL Aref El-Hawary
 Associate Dean Of Engineering
 Faculty Of Engineering
 Technical University Of Nova Scotia, Canada
- 3- Prof. Dr. Soliman Abed El' Hady Soliman
 Electrical Power & Machines Eng. Dept.
 Faculty Of Engineering
 Ain Shams University, Egypt

ACKNOWLEDGMENT

I would like to express my deepest gratitude to Prof. Dr. Ahmed Rizk Abul Wafa for his supervision and helpful guidance during the execution of this research work.

STATEMENT

This thesis is submitted to Ain Shams University in partial

fulfillment of the Degree of Doctor of Philosophy in Electrical

Engineering.

The work included in this thesis was carried out by the

author in the Department of Electrical Power Engineering, Ain

Shams University.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institute.

Name : Hoda Ahmed Mohamed Owess

Signature:

Date :

Central Library - Ain Shams University

CONTENTS

		Page No.
SUMMARY		i
ABSTRACT		\mathbf{v}
NOMENCLATURE		vii
LIST OF TABLES		xiv
LIST OF FIGURES		xvi
CHAPTER ONE :	INTRODUCTION	
1.1	Industrial Load Management Analysis	1-1
1.2	Industrial Loads Optimum Load	
	Management	1-4
CHAPTER TWO:	REVENUE LOSS DUE TO POWER	
	DEFICIT	
2.1	Structure Of Revenue Loss And Its	
	Determinations	2-1
2.2	Revenue Loss Incurred By Industry Due	
	To Power Deficit	2-1
2.3	Revenue Loss Incurred By Power	
	System	2-10
2.4	Characteristics Of Incremental Revenue	
	Loss	2-13
2.5	Incremental Revenue Loss Due To	
	Power Deficit At Step Down	
	Transformers Substations	2-23
2.6	Conclusions	2-37

CHAPTER THREE:	OPTIMUM MANAGEMENT OF	
	INDUSTRIAL LOADS DURING	
	POWER SUPPLY DEFICIT	
3.1	Introduction	3-1
3.2	Problem Formulation	3-2
3.3	Optimum Load Shedding Scheme	
	Securing Minimum Revenue Loss	
	During Power Supply Deficit	3-4
3.3.1	Generalized Non Linear Constrained	
	Programming Technique "Modified	
	Constrained Rosenbrock Algorithm"	3-4
3.3.2	Lagrange Technique Augmented With	
	Technical Constraints Algorithm	3-5
3.3.2.1	Upper Limit Violation	3-9
3.3.2.2	Lower Limit Violation	3-11
3.3.2.3	Solution Algorithm	3-13
3.4	Conclusion	3-18
CHAPTER FOUR :	CASE STUDY	
4.1	Case Study Formulation	4-1
4.2	Problem Solving	4-1
4.2.1	Optimum power supply scheduling	4-1
4.2.1.1	Generalized Non Linear Constrained	
	Programming Algorithm	4-1
4.2.1.2	Lagrange Technique Augmented With	
	Technical Constraints	4-5
4.2.2	Random power supply scheduling	4-6
4.3	Conclusion	4-12

CHAPTER FIVE:	CONCLUSIONS AND	
	RECOMMENDATIONS	
5.1	Conclusions	5-1
5.2	Recommendations To Industrial Customer	5-3
5.3	Recommendations To Electric Utility	5-3
5.4	Further Work	5-3
APPENDIX A:	GENERALIZED NON LINEAR	
	CONSTRAINED PROGRAMMING	
	ALGORITHM	A-1
APPENDIX B:	LAGRANGE TECHNIQUE AUGMENTED	
	WITH TECHNICAL CONSTRAINTS	
	PROGRAMMING ALGORITHM	B-1
REFERENCES:		R-1

