
SERUM LEVELS OF TUMOR NECROSIS FACTOR IN DIFFERENT STAGES OF **SCHISTOSOMAL INFECTIONS**

THESIS SUBMITTED FOR PARTIAL FULFILMENT OF MD DEGREE IN CLINICAL AND CHEMICAL PATHOLOGY

Hossam Mostafa Fahmy
M.B., B.Ch.
M.Sc. Clin. and Chem. Pathol. Ain Shams University

UNDER SUPERVISION OF

Prof. Dr. Aida Abdel-Azim Prof. of Clinical Pathology and Head of Department Faculty of Medicine Ain Shams University

Prof. Dr. Laila El-Shawarby Prof. of Clinical Pathology Faculty of Medicine Ain Shams University

Prof. Dr. Sohir Shoir Prof. of Medicine and Head of Department Faculty of Medicine Ain Shams University

Prof. Dr. Adel El-Messiry Prof. of Parasitology Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1994

TO MY PARENTS, DALIA & OMAR

ACKNOWLEDGMENT:

I wish to express my deepest gratitude to Prof. Dr. Aida Abdel-Azim, Prof. of Clinical Pathology, Ain Shams University for having given me the chance to undertake the subject of this thesis and whose guidance was of great help in performing this work.

I am deeply indebted to Prof. Dr. Soheir Sheir, Prof. of Medicine, Ain Shams University. Her meticulous supervision, constant and kind advice were invaluable. She has given me a lot of her time and experience.

My thanks also goes to Prof. Dr. Laila El-Shawarby, Prof. of Clinical Pathology, Ain Shams University for her precious advice, constant help and kind patience in supervising this work.

I am also thankful to **Prof. Dr. Adel El-Missiry**, **Prof. of Parasitology**, **Ain Shams University** for his generous co-operation, help and support in preparing this thesis.

Lastly but not least, I would like to express my deep appreciation to Dr.

Maha El-Tahawy, Assistant Prof. of Clinical Pathology, Ain Shams

University for her invaluable assistance.

Hossam Mostaja

List of tables:

Table (1): Stimulants, sites of production and secondary mediators produced by TNF.

Table (2): Concentration-dependent effects of TNF:

Table (3): Immunopathology of the schistosome egg granuloma (Stadecker, 1992):

Table (4): Descrptive statistics for control group

Table (5): Descrptive statistics for group-I

Table (6): Descrptive statistics for group-II

Table (7): Descrptive statistics for group-III

Table (8): Results of SEA antibodies as evaluated by Dot ELISA:

Table (9): Comparative study between control and group-1 (active group) using student t'test for all studied parameters

Table (10): Comparative study between control and group-2 (closed complicated mansoni) using student t'test for all studied parameters

Table (11): Comparative study between control and group-3 (S. haematobium) using student t'test for all studied parameters

Table (12): Comparative study between group-1 and group-2 using student ttest for all studied parameters

Table (13): Comparative study between group-1 and group-3 using student ttest for all studied parameters

Table (14): Comparative study between group-2 and group-3 using student t'test for all studied parameters

Table (15): One Way Sided-Analysis of variance study for all studied parameters between the three groups

Table (16): Data for control group

Table (17): Data for active schistosomal infection (group-1).

Table (18): Data for closed complicated schistosoma mansoni (group-2).

Table (19): Data for closed complicated schistosoma haematobium (group-3).

List of figures:

- Fig. (1) A model for the down-regulation of the p60 and p80 form of the TNF receptors.
- Fig. (2) Possible roles of the two TNF receptors in cellular signaling.
- Fig. (3) A model proposed by Opdenakker and Van Damme (1994) to describe the pathophysiology of MS in detail and the role of TNF.
- Fig. (4) DOT-ELISA and DOT-DIA protocols:
- Fig. (5) Comparative study for TNF among all studied groups.
- Fig. (6) Comparative study for IgE among all studied groups.
- Fig. (7) Comparative study for absolute eosinophil count among all studied groups.

List of abbreviations:

Ag: antigen

AGE: advanced glycosylation endproducts

AML: acute myeloid leukaemia
APM: apical plasma membrane
BCG: Bacille Calmette-Guerin
BSA: bovine serum albumin

CD: cluster of differentiation complement 5a protein

DIC: dissiminated intravascular coagulopathy

DNA: deoxyribonucleic acid

ELAM: endothelial-leukocyte adhesion molecule

En: envelope

Fab: fraction antigen binding
Fc: fraction crystallizable

FCS: fetal calf serum

GM: granuloma macrophage

GM-CSF: granulocyte monocyte-colony stimulating factor

GVHD: graft versus host disease

HBV: hepatitis B virus hepatitis C virus

HIV: human immunodeficiency virus

HPLC: high performance liquid chromatography

intercellular adhesion molecule insulin dependant diabetes mellitus

IL-1: interleukin

IL-1β: interleukin 1 beta

IL-4: interleukin 4
IL-6: interleukin 6
IL-8: interleukin 8
IL-10: interleukin 10

IFN-τ: interferon gamma
IgE: immunoglobulin E
IgG: immunoglobulin G
IgM: immunoglobulin M

J-HR: Jarisch-Herxheimer reaction

KD: kilo dalton

LCF: liver cell failure
LPL: lipoprotein lipase
LPS: lipopolysaccharide

mAbs: monoclonal antibodies

M-CSF: macrophage-colony stimulating factor

M-ECEF: monocyte eosinophil cytotoxicity enhancing factor

MHC: major histocompatibility complex messenger ribonucleic acid

mRNA: messenger ribonucieic MS: myelosclerosis

NC: nitrocellulose
NK: natural killer

OPD: O-phenylene diamine

PASL: platelet activating suppressing lymphotoxin

PBMC: peripheral blood monocytes
phosphate buffer saline
peripheral T cell lymphoma

RA: rheumatoid arthritis soluble egg antigen

TBS: tris buffer saline

T_H1: T-helper 1 T_H2: T-helper 2

TNF- α : tumor necrosis factor-alpha

TNF-BP: TNF binding proteins

TNF-R: TNF receptor

VOD: veno-occlusive disease

Contents:

INTRODUCTION AND AIM OF THE WORK REVIEW OF LITERATURE	1	
I. Tumor Necrosis Factor II. Schistosoma Life Cycle III.Antigenic Structure of Human Schistosomes IV. Tumor Necrosis Factor and Schistosomiasis	4 42 47 64	
MATERIAL AND METHODS	71	
RESULTS	86	
DISCUSSION	100	
SUMMARY AND CONCLUSIONS	107	
APPENDIX	110	
REFERENCES	114	
ARABIC SUMMARY		

INTRODUCTION AND AIM OF THE WORK

Introduction:

Tumor necrosis factor (TNF-alpha) or cachectin is a monokine initially described as a tumoricidal agent. Activated macrophages constitute the major cellular origin of TNF (Aggarwal et al., 1985c).

The gene coding for human TNF lies on the short arm of chromosome 6, closely linked to the gene coding for lymphotoxin (a closely related lymphokine) and both genes, as such, are HLA linked (*Beutler, 1990*).

TNF is produced as a prohormone and is further cleaved to yield the biologically active polypeptide (*Beutler and Cerami, 1987*). Purified TNF is an acidic and hydrophobic protein having a pH of 4.7.

TNF has emerged as a mediator of general inflammation besides playing an important part in diverse human disease processes. It is directly toxic to vascular endothelial cells and is an endogenous pyrogen capable of inducing fever (Cannon et al., 1990).

TNF is capable of stimulating synovial-cell production of prostaglandin E_2 and collagenase. Excess production may lead to the loss of bone and cartilage in rheumatoid arthritis. Similarly, inflammatory diseases of the central nervous system, gastrointestinal tract, lungs, kidneys and other tissues depend on TNF release.

TNF also acts to induce the biosynthesis and release of specific proteins, including class-1 major histocompatibility antigen, granulocyte-monocyte colony stimulating factor and interleukin-1 (Wakefield et al., 1991).

Raised serum levels of TNF were found in parasitic infections. It has been suggested that TNF may serve as an important antigen-dependent host defense mechanism against parasitic agents. It is elevated in the majority of patients with plasmodium flaciparum malaria and in leishmaniasis patients. TNF also exerts a direct anti-tryponosomal effect (*Scuderi et al.*, 1986).

As regards Schistosoma infection, TNF was found to induce macrophage killing of schistosomula of Schistosoma mansoni and also exhibits a larvicidal activity against the larvae of the parasite (James et al., 1990).

Aim of the Work:

Our aim is to study the serum levels of TNF and its relation to eosinophil count and IgE in the different stages of schistosomal infections.

REVIEW OF LITERATURE