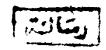
Ain-Shams University Faculty of Engineering



CORRUGATED SHEET SHEAR DIAPHRAGMS CONNECTED BY EPOXY

Ahmed Abdel Salam Ismail Elserwi

A Thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science in Structural Engineering

27254

Supervised by

Dr. Adel Helmy Salem Dean of Faculty of Eng. and Prof. of Steel Structures Ain Shams University

Dr. Mohamed Nabil El-Atrouzy Prof. of Steel Structures.

Ain-Shams University.

Dr. Amin Saleh Ali

Ass. Prof. Of Theory of Structures Ain-Shams University.

<u> Cairo - 1988</u>

Examiners Committee

Name, Title & Affiliation

- 1-Prof. Dr. El Sayed Bahaa Eldin Machaly.
 Prof. of Steel Structures.
 Cairo University.
- Signature

- 2-Prof. Dr. Kamal Hassan Mohamed.
 Prof. of Steel Structures.
 Ain Shams University.
- 3-Prof. Dr. Adel Helmy Salem.

 Dean of Faculty of Engineering,

 and Prof. of Steel Structures.
- 4-Prof. Dr. Mohamed Nabil El-Atrouzy.

 Prof. of Steel Structures.

 Ain Shams University.

Ain Shams University.

نيالله درنى

Date: / /1988

Statement

This dissertation is submitted to Ain Shams University for the degree of MASTER OF SCIENCE in Structural Engineering.

The work included in this thesis was carried out by the author in the departement of Structural Engineering, Ain Shams University, from November 1983 to August 1988.

No part of this thesis has been submitted for a degree or a qualification to any other University or Institution.

Date: 24/8/1988

Signature:

Name: Ahmed Aabdel Salam Ismail

ACKNOWLEDGEMENT

The author wishes to express his sincere thanks to prof. Dr. Adel Helmy Salem, Dean of Faculty of Engineering, and Prof. of Steel Structures, Ain Shams University, for his encouragement and precious advice.

The author is greatly grateful to Prof. Dr. Mohamed Nabil El-Atrouzy, Prof of Steel Structures, Ain Shams University, for his fruitful supervision and his endless support throughout the course of this work.

The author wishes also to expand his gratitude to Dr. Amin Saleh Ali, Ass. Prof. of Theory of Structures, Ain Shams University, for his guidance and assistance.

The author also, expresses his thanks to the staff of the Static Tests Laboratory, of Aircraft Factory, Arab Organization of Industrialization. for their unlimited help during the experimental work.

The author also wishes to express his appreciation to the staff of the testing Material Laboratory of Faculty of Engineering, Ain Shams University, for their help during experimental studies.

The author also wishes to express his deep thanks to his colleague in Structural Engineering Department, Faculty of Engineering, Ain Shams University, for their cooperation.

DEDICATION

TO MY PARENTS,

AND TO MY WIFE

NOTATIONS

- A The shear panel dimension in direction parallel to corrugation.
- a The dimension of rectangular plate element in direction of corrugation.
- A, Cross sectional area of parallel members.
- B Shear panel dimension in direction perpendicular to corrugation.
- b Dimension of rectangular plate element in direction perpendicular to corrugation.
- 2b₁ Trough width of one corrugation.
- c Total flexibility of the shear panel.
- $c_{i,i}$ Flexibility due to profile distortion.
- c1.2 Flexibility due to shear strain of sheets.
- c_{1.3} Flexibility due to slip of sheet to purlin connections.
- c2.3 Flexibility due to slip of sheet to frame connections.
- c₃ Flexibility due to axial strain of parallel members.
- d Depth of one corrugation.
- $\mathbf{D}_{\mathbf{X}}$ Bending stiffness of sheet per unit length perpendicular to corrugation.
- $\mathbf{D}_{\mathbf{Y}}$ Bending stiffness of sheet per unit length parallel to corrugation.
- A The deflection of the shear panel.

- E Modulus of elasticity of steel.
- Exx Modulus of elasticity of sheets in direction parallel to corrugation.
- Eyy Apparent modulus of elasticity of sheets in direction perpendicular to corrugation.
- $\mathbf{F}_{\mathtt{sh}}$ force carried by unit length of sheet to sheet connection.
- F Force carried by one glued area of sheet to purlin connection.
- F Force carried by unit length of sheet to rafter connection.
- G_{XY} Shear modulus of a shear panel.
- g Number of unit lengths of sheet to sheet connection.
- H Flange width of beam element Cused with friction element)
- h height of corrugation.
- \overline{K} Nondimensional factor to calculate the flexibility due to distortion of sheets.
- k Normal stiffness of friction element.
- k_s shear stiffness of friction element.
- 1 corrugation width.
- np Number of purlins.
- n sh Number of sheets per shear panel.
- $n_{\mbox{\scriptsize sp}}$ Number of sheet to purlin glued areas.
- n Number of sheet to rafter unit lengths of glue.

- ν Poisson's ratio for steel.
- ν Poisson's ratio relating included strain in X direction to imposed strain in Y direction.
- Poisson's ratio relating included strain in Y direction to imposed strain in X direction.
- Q Shear load affecting shear panel.
- s Slip of sheet to sheet connection.
- s Slip of sheet to purlin connection.
- s Slip of sheet to frame connection.
- T Friction element thickness.
- t Sheet thickness.
- u Perimeter width of one corrugation.
- Z One glued area between sheet and purlin.

CONTENTS

	Page
CAHPTER (1): INTRODUCTION	
1-1 Principles Of Diaphragm Action	1
1-2 Types Of Buildings Suitable For Shear Diaphragms	5
1-2-1 Diaphragm Acting Alone	5
1-2-2 Diaphragm Acting In Conjunction with Rigid-	
Jointed Frames	5
1-3 Suitable Cladding For Shear Diaphragms	7
1-4 Suitable Connections For Shear Diaphragms	7
1-4-1 Why epoxy	10
1-5 Previous Work	11
CHAPTER (2) DIFFERENT PARAMETERS AFFECTING FLEXIBILITY	
AND STRENGTH OF SHEAR PANEL.	
2-1 Introduction	17
2-1-1 The Basic Shear Panel	17
2-1-2 Components Of Individual Panel	17
2-1-3 Types Of Diaphragms	19
2-2 Determination Of Flexibility And Strength Of The	
Individual Shear Panel	19
2-3 Expressions For Diaphragm Strength Using Simple	
Equilibruia	22

			Page
	2-3-1	Expressions Of Sheet To Sheet Connection	
		Failure Load	23
	2-3-2	Expression Of Sheet TO Rafter Connection	
		Failure Load	29
	2-3-3	Expression For Sheet To Purlin Connection	
		Failure Load	30
	2-3-4	Failure Due To Overall Buckling Of Sheets	31
2-4	Expres	ssion For Diaphragm Flexibility Using Simple	
	Equil:	ibruim	33
	2-4-1	Flexibility Due To Profile Distortion Of	
		Sheeting	33
	2-4-2	Flexibility Due To Shear Strain Of Sheets	37
	2-4-3	Flexibility Due To Slip Of Sheet TO	
		Perpendicular Member Connections	38
	2-4-4	Flexibility Due To Slip In Sheet To Sheet	
		Connection	39
	2-4-5	Plexibility Due To Slip Of Sheet To Parallel	
		Member Connections	40
	2-4-6	Plexibility Due To Axial Strain In Edge	
		Members	40
CHAI	PTER (3) COMPUTER ANALYSIS USING THE FINITE ELEMENT	
		METHOD.	
3-1	Intro	duction	42

F	age
3-2 Analytical Basis	43
3-2-1 Panel Stiffness	44
3-2-2 Marginal Members And Purlins	51
3-2-3 Interface Finite Element	54
3-2-3-a Properties Of The Interface Friction	
Element	58
3-2-4 Formation Of The Total Stiffness Matrix	58
3-2-5 Solution Of Equations	60
3-3 Computer Program	62
CHAPTER (4) EXPERIMENTAL PROGRAM	
4-1 Introduction	71
4-2 Tests To Get Shear Properties Of Epoxy	73
4-2-1 Objectives Of The Experiment	73
4-2-2 Components Of The Experiment	73
4-2-3 Procedure Of Test	73
4-2-4 Analysis Of Test Results	77
4-3 Full Scale Tests On A Shear Panel	79
4-3-1 Test Number 1	79
4-3-1-a Objectives Of Test	79
4-3-1-b Description Of Tests and equipments	79
4-3-1-c Procedure Of performing The Test	88
4-3-1-d Test Results	91
4 2 2 Book Number 2	01

				Page
4-3-2-a Objectives Of The Experiment	•			91
4-3-2-b Description Of Tests and equipments.		•		93
$4 \pm 3 - 2 - c$ Procedure Of performing the Test	•	٠	ı	93
4-3-2-d Test Results	•			93
4-3-3 Test Number 3		•		94
4-3-3-a Objectives Of Test	•			96
4-3-3-b Description Of Tests and equipments.				96
4-3-3-c Procedure Of performing the Test	•			96
4-3-3-d Test Results				98
CHAPTER (5) COMPARISON BETWEEN ANALYTICAL	À	ND	j	
EXPERIMENTAL RESULTS.				
5-1 Introduction			•	102
5-2 Shear Panel With Two Purlins				103
5-2-1 Solutions By Expressions				103
5-2-1-a Calculation Of The Total Plexibility.				10
5-2-1-b Calculation Of Ultimate Load				107
5-2-2 Solution By Finite Element Computer Prog	ra	m		108
5-2-3 Test Results				108
5-2-4 Comparison Between Different Solutions.		•		10
5-3 Shear Panel With Three Purlins			•	111
5-3-1 Solutions By Expressions				11:
5-3-1-a Calculations Of The Total Flexibility.			•	11:
5-3-1-b Calculation Of The Ultimate Load.			_	11:

	Page
5-3-2 Solution By Finite Element Computer Program.	115
5-3-3 Test Results.	115
5-3-4 Comparison Between Different Solutions	115
CHAPTER (6) CONCLUSIONS Suggestions For Future Studies	119
REFRENCES	120