DIGESTIVE ENZYMES OF THE SANDFLY

Phlebotomus langeroni / (DIPTERA: PSYCHODIDAE)

7-10/49.114

A THESIS

Presented for the award of the Dagran - 1

Doctor of Philosophy

BY

EBTESAM ABDEL-MONIM AHMED EL-KORDY

B.Sc. & M.Sc.

Department of Entomology Faculty of Science

Ain Shams University

1996

i

Thesis Examination Committee

NAME	TITLE	SIGNATURE
		• • • • • • • •
		• • • • • • • •

Supervisors:

- Prof. Dr. Bahira El Sawaf
 Head of Entomology Dept., Faculty of Science,
 Ain Shams University.
- Prof. Magdi Gebril Shehata
 Professor of Entomology, Faculty of Science,
 Ain Shams University.
- Dr. Mona Ahmed shoukry
 Assistant professor of Entomology, Faculty of
 Science, Ain Shams University.
- Dr. Kamal Emam Kamel Lecturer of Entomology, Faculty of Science, Ain Shams University.

BIOGRAPHY

Place of birth Qalubiya Governorate

Date of graduation May,1981.

B.Sc. in Entomology, Faculty of Degrees awarded

Science, Ain Shams University,

Egypt.

M.Sc. Degree in Entomology, 1989,

Faculty of Science, Ain Shams

University, Egypt.

Research Assistant in the Research Occupation

> and Training Centre on Vectors of Diseases, Ain Shams University,

Egypt.

Date of registration 14/12/1992.

for the Ph.D.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisors for their help for critically reviewing this manuscript, and for their excellent technical assistance throughout the period of this study, namely Prof.Dr. Bahira El sawaf, Head of Entomology Dept., Faculty of Science, Ain Shams University and the Director of Research and Training Centre on Vectors of Diseases, Ain Shams University; Prof.Dr. Magdi Gebril Shehata, Professor of Entomology, Entomology Dept., Faculty of Science, Ain Shams University; Dr. Mona Ahmed Shoukry, Assistant Professor of Entomology, Entomology Dept., Faculty of Science, Ain Shams University and Dr. Kamal Emam Kamel, Lecturer of Entomology, Entomology Dept., Faculty of Science, Ain Shams University.

Special appreciation is due to Dr. Rod Dillon, the Natural History Museum , London, UK. who shared in suggesting the workscope, outlined the scheme of the study, for his help during this study and for offering me his valuable time.

The present work has been carried out through the academic link between the Research and Training Centre on Vectors of Diseases, Faculty of Science, Ain Shams University and the Natural History Museum ,London, UK. The research visits to London were funded by the British Council.

My deepest thanks to Dr. Magdi Gebril Shehata, Egyptian coordinator in the link, Faculty of Science, Ain Shams University and Dr. Richard Lane, London coordinator in the link, the Head of the Dept. of Entomology, the Natural History Museum, London, UK., who gave me the chance to work through the link.

I also would like to express my thanks to all staff members of the sandfly group at the Research and Training Centre on Vectors of Diseases Ain Shams
University, Egypt, and the technical team at the Natural History Museum, London.

Special appreciation is due to Dr. Peter Billingsley, Biology Dept., Imperial college, London, UK., for provision of the mosquitoes, Anopheles stephensi.

Special appreciation is due to Dr. Julian Edwards science officer in the British Council for his effort through the Scientific link.

TABLE OF CONTENTS

Page
ABSTRACT1
List of tables
List of figures
I. INTRODUCTION
II. LITERATURE REVIEW4
1. Glycosidases4
2. The feeding response of sandfly to sugars11
3. Proteases21
III. MATERIALS AND METHODS28
1. Insects
2. Blood feeding of sandflies28
3. Sugar feeding of sandflies28
4. Preparation of midgut homogenate29
5. Enzyme assays29
5.1. Glycosidases29
5.1.1. Kinetic method29
5.1.2. Endpoint method
6. Optimizing the assay for $\alpha\text{-glucosidase}31$
6.1. pH optima31
6.2. Substrate concentration
6.3. Stability of α-glucosidase31
6.4. Metabolic inhibitors of α -glucosidase32
7. Location of α -glucosidase activity
8. Membrane bound α -glucosidase32
9. Separation of α -glucosidase by using
isoelectrofocusing technique33
10. Protein assay33
11. Bicinchoninic acid (BCA) protein assay34
12. Blood meal profile 34

			Page
	13.	Sugar meal profile	35
	14.	Estimation of β -glucosidase	35
	15.	Estimation of α -galactosidase	35
	16.	Estimation of β -galactosidase	36
	17.	Induction of β -galactosidase	36
	18.	Estimation of α mannosidase	36
	19.	Estimation of α -amylase	37
	20.	The feeding response of P.langeroni to sugars	37
	21.	Proteases	38
		21.1. Trypsin assay	38
		21.2. Aminopeptidase assay	38
	22.	Treatment of results	39
IV.	RESU!	LTS	40
	1. α	-glucosidase	40
	1	.1. Optimization of the technique for estimation	on
		of α-glucosidase	40
		1.1.1. The optimal pH of α -glucosidase	40
		1.1.2. Effect of substrate concentration of	n
		enzyme activity	40
		1.1.3. The stability of enzyme at 4 and	
		26±1°C	43
		1.1.4. Inhibition of α -glucosidase activit	У
		post sugar meal	43
	1	.2. The activity of α -glucosidase in. P. langer	oni
		and other reference insects	46
	1	.3. Localization and changes in activity of	
		α -glucosidase in the midgut	47
	1.	.4. Membrane bound α-glucosidase	49
		.5. Separation of α-glucosidase by using	
		isoelectrofocusing technique	
	1	6 Determination of protein content	

Page
1.7. α -glucosidase activity during blood meal
digestion56
1.8. α -glucosidase activity during sugar meal
digestion60
1.8.1. Sucrose meal60
1.8.2. Glucose meal60
1.9. The feeding response of P. langeroni to
sugars63
1.10. The activity of a series of glycosidases in
the midgut of sandfly66
2. Proteases67
2.1. Induction of trypsin post blood meal67
2.2. Induction of aminopeptidase post blood
meal70
V. DISCUSSION AND CONCLUSIONS
VI. SUMMARY92
VII. LITERATURE CITED97
ARABIC SUMMARY

