NATURAL "PASSIVE" IMMUNITY AGAINST MEASLES AMONG EGYPTIAN INFANTS

Thesis

Submitted for Partial Fulfillment of master degree in

"Pediatrics"

 $\mathbf{B}_{\mathbf{Y}}$

LM, MAHER FATHY HANN

M. B., B. Ch.

Supervisors

93377

PROF. DR. MAGID ASHRAF ABDEL FATTAH IBRAHIM

Professor of Pediatrics, Faculty of Medicine Ain - Shams University

PROF. DR. TAGHREED H. T. EL -KHASHAAB

Ass. Prof. of Microbiology and Immunology Faculty of Medicine, Ain - Shams University

DR. MONA MOUSTAFA EL- GANZOURY

Lecturer of Pediatrics, Faculty of Medicine Ain - Shams University

FACULTY OF MEDICINE AIN - SHAMS UNIVERSITY 1996

AKNOWLEDGEMENT

I would like to express my everlasting gratitude to *Prof. Dr.*Magid Ashraf Abdel Fattah Ibrahim, Professor of Pediatrics, Faculty of Medicine, Ain - Shams University who initiated and supported this work.

I wish also to express my extreme thankfullness and profound gratitude to *Prof. Dr. Taghreed H. T. El Khashaab*, Ass. Prof. of Microbiology and Immunology, Faculty of Medicine, Ain - Shams University for her great help in the laboratory aspect of this work.

I wish to extend may thanks to *Dr. Mona Moustafa*El- Ganzoury, Lecturer of Pediatrics, Faculty of Medicine, Ain - Shams

University for her meticulous supervision and valuable help throughout the work.

My thanks are also due to *Dr. Maha Yousif*, Lecturer of pediatrics Al-Azhar University for her kind help.

Last but not least, I would like to express my heartly feelings towards the patients included in this study. Without them this work would not have been completed.

CONTENTS

	Page
I- Introduction	
II- Aim of the work	3
II- Review of literature:	
A. Historical Review	
B. Epidemiology	5
C. Measles Virus	
D. Immunity to Measles	13
E. Pathogenesis	
F. Clinical Picture and Differential Diagnosis	21
G. Complications of Measles	27
H. Laboratory Diagnosis	32
I. Treatment	
J. Passive Natural Immunity	38
K. Prevention:	
* Immune - Serum Globulin	45
* Measles Vaccination :	
1. Measles vaccines	
2. Immune Response to Vaccination	50
3. Vaccine Adminstration	51
4. Age of Vaccination	
5. Adverse Reactions to Vaccination	59
6. Contraindications of Vaccination	60
7. Revaccination	62
8. Vaccine Failures	65
L. Eradication of Measles	68
TV Collins and Machine	70
IV. Subject and Methods V. Results	
VI. Discussion	
VII. Summary and Conclusion	
VIII. Recommendations	
IX. References	
X. Arabic Summary	

LIST OF TABLES

Page
Table (1): The sequence of measles viral infection in uncomplicated
primary disease
Table (2): A guide to the differential diagnosis of measles
Table (3): Forms of pneumonia associated with measles
Table (4): Forms of involvement of the CNS in connection with
measles
Table (5): Laboratory diagnosis of measles virus infections
Table (6): Summary of various data of both groups
Table (7): Comparison between group I and group II as regards the
presence and absence of meeting Inc.
Table (8): Comparison between group I and group II as regards the
mean measles antibody six
mean measles antibody titers
Table (9): Comparison between male and female infants in each of the
groups studied regarding the presence and absence of
measles IgG antibody80
Table (10): Comparison between male and female infants in both groups
regarding the mean measles antibody titers
Table (11): Comparison between breast and artifically fed infants in
both groups regarding the presence and absence of measles
IgG antibody
Table (12): Comparison between breast and artificially fed infants
regarding the mean measles antibody titers83

Table (13): Comparison between infant's of mothers who had natural
measles and those with vaccinated mothers regarding the
presence and absence of measles IgG antibody
Table (14): Comparison between infant's of mothers who had natural
measles and those with vaccinated mothers as regards the
mean measles antibody titers86
Table (15): Comparison between the studied two age groups of mothers
as regards the presence and absence of measles IgG antibody
in their infants88
Table (16): Comparison of infantile mean measles antibody titers in
relation to their maternal age
Table (17): Comparison between the studied two age groups of mothers
regarding their source of immunity against measles90
Table (18): Comparison between infants according to their order of birth
as regards the presence and absence of measles IgG
antibody92
Table (19): Comparison between infants according to their birth order as
regards the mean measles antibody titers
Table (20): Raw data of the studied infants
Table (20). Naw data of the studies and the studies

LIST OF FIGURES

	Page
Fig. (1): Morphology of measles virus	12
Fig. (2): Histogram showing % of seroposive and seronegative infa	ants
in each of the groups studied	79
Fig. (3): Histogram showing % of seroposive and seronegative infa	ants
according to sex	81
Fig. (4): Histogram showing % of seroposive and seronegative infa	ants
of both sexes in each of the groups studied	
Fig. (5): Histogram showing % of seroposive and seronegative infe	ants
according to their feeding practice	84
Fig. (6): Histogram showing % of seroposive and seronegative inf	ants in
each group according to their feeding practice	85
Fig. (7): Histogram showing % of seroposive and seronegative inf	ants
according to the source of maternal immunity	87
Fig. (8): Histogram showing % of seroposive and seronegative inf	fants
according to the maternal ages	89
Fig. (9): Correlation between maternal age and infant's measles Ig	зG
antibody level	91
Fig. (10): Histogram showing % of seroposive and seronegative is	nfants
according to their order of birth	93
Fig. (11): Correlation between infant's weight and measles IgG and	ntibody
level	94
Fig. (12): Sharts of male and female children regarding their weig	ght,
length, head circumference in relation to age	

ABBREVIATIONS

AIDS : Acquired immuno-deficiency syndrome

C.D.C. : Centers for Disease Control

C.F. Complement fixation
C.N.S Central nervous system.
C.S.F. Cerebro spinal fluid.

E.I.A. Enzyme immuno-assay.

E.L.I.S.A. : Enzyme linked immuno-sorbent assay.

E.N.T. Enhanced nutralization.

E.P.I. Expanded Programme on Immunization.

E.U. : ELISA Units.

E.Z. Edmonston Zagreb. F.w.P. Four week periods.

H.A.I. Hemagglutination inhibition.

H.D.C. Humman diploid cell.

H.I.V. Human immuno-deficiency virus

Ig Immunoglobulin.

ISG : Immune - serum globulin.
KMV : Killed measles vaccine.

L.B.W. Low birth weight

M.M.R. Measles Mumps and Rubella

M.O.H. : Ministry of Health

NT Nutralization

RNA Ribo nucleic acid.

SSPE Subacute sclerosing panencephalitis

Tc : Tissue culture.

WHO World Health Organization

INTRODUCTION AND ALM OF THE WORK

INTRODUCTION

Measles is caused by a single stranded RNA virus of the "Paramyxovirus" group that is related to "Morbillivirus" genus (Panum, 1940).

It is a systemic disease, the primary site of infection is the respiratory epithelium of the nasopharynx. Two to three days after invasion and replication in the respiratory epithelium, there is a primary viremia with infection of the reticuloendothelial system. This is followed by secondary viremia which occurs 5 to 7 days after initial infection (Bloch et al., 1985).

Following an incubation period averaging 10 to 12 days, the patient typically develops a prodrome consisting of fever and malaise followed by cough, coryza and conjunctivitis. An enanthem, characterized by small bluish - white spots on a red background (Koplik's spots), may be seen on the buccal mucosa 2 days before to 2 days after onset of rash. The characteristic rash of measles usually appears 2-4 days after the onset of the prodromal symptoms (Krugman et al., 1965).

Measles can be diagnosed clinically by the characteristic rash and the prodromal symptoms. The disease is confirmed by documenting significant rise in antibody titre (Norrby, 1988).

In developing countries, measles is generally more severe and affects younger children than in developed countries. The average age at infection also differs between urban and rural areas. Crowding and more

frequent epidemics in urban areas lead to greater opportunity for exposure to measles in younger children (Hyden, 1974).

With the introduction of measles vaccine, many developing countries have had success in lowering morbidity and mortality from measles (Henderson et al., 1988).

Almost all infants acquire passive immunity againest measles through transfer of (IgG) antibodies across the placenta. The age at which infants become susceptible varies owing to differences in transplacental transfer antibody and in rates of loss of antibody in different parts of the world (Black et al., 1986). In general, infants in developing countries lose antibody at younger age than those in developed countries (Dabis et al., 1986).

The proplem of high morbidity and mortality in children younger than the recommended age for vaccination (9 months) has stimulated interest in developing strategies for vaccination of younger infants (EPI, 1990).

ALM OF THE WORK

The aim of the present work is to evaluate the natural transplacental immunity against measles among Egyptian infants less than 9 months, through measurement of level of serum (IgG) antibody against measles in infants (5 - 6 months). This may enlight us about the optimal age for vaccination against this disease.

