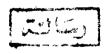
1017 1 Y

THE APPLICATIONS OF MONOCLONAL ANTIBODIES

IN

PAEDIATRIC ONCOLOGY


An Essay Submitted For
Partial Fulfilment
of

M.S. DEGREE OF PAEDIATRICS

618-92992 M. A

Ву

MAMDOUH ABD EL MAKSOUD MOHAMED

Supervisor

PROF, DR. OMAR HELMY

Professor of Paediatrics

Faculty of Medicine

Ain Shams University

1987

بسم الله الرحمن الرحميم
" قالوا سبحانك لاعلم لنا إلا ماعلمتنا إنك أنت العليم الحكيم"
صدق الله العظيم آية ٢٢ سورة البقسرة

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor, Professor Dr. OMAR HELMY, Professor of Paediatrics Ain Shams University, for his continual guidance, encouragement and help during the course of this work, without whom the work could not be completed.

I feel greatly indebted to Professor Dr. FOUAAD EL BADRAWY, Professor of Paediatrics, Ain Shams University, for several discussions during the course of this work.

I wish to express my sincere appreciation to Professor Dr. HAMED SHATTLA, Professor of Paediatrics, Ain Shams University, for his understanding, continued assistance and guidance during the course of this work.

Deep thanks are due to Dr. KHALED AWAAD, Lecturer of Paediatrics, Ain Shams University, for his patience and efforts in reviewing this essay.

Mamdouh Abd El Maksoud

C O N T E N T S

		Page
I - INTRODUCTION	• • •	1
II - GENERAL CONSIDERATIONS		3
III - THE APPLICATIONS OF MONOCLONAL ANTIBODI	ES	
IN PAEDIATRIC ONCOLOGY	• • •	23
A - In Acute Leukaemias		23
B - In Lymphomas		58
(1) In Hodgkin's lymphoma		58
(2) In non-Hodkin's lymphoma		68
C - In Neuroblastoma		90
IV - SUMMARY AND CONCLUSION		98
V - REFERENCES	1	L03
ARABIC SUMMARY.		

LIST OF TABLES

Table No		Page
II-1	Factors permitting escape of tumour	
	cells from antibody	11
II-2	Comparative features of MAbs and	
	PAbs as immunocytochemical reagents	21
III-1	MAbs reactive with human	
	B-lymphocytes	26
III-2	MAbs reactive with human	
	T-lymphocytes	29
III-3	MAbs leukaemia associated antigens	30
III-4	Frequently referenced antibodies	
	with cluster designations	33
III-5	Monoclonal antibody phenotyping of	
	acute leukaemia	45
III-6	Representative murine MAbs that	
	identify human myeloid cell surface	
	Ags: Distribution of antigen expression	
	among peripheral blood cells	4 7
III-7	Use of myeloid surface markers to dis-	
	criminate between myeloid and lymphoid	
	leukaemia .	. 0

Table No.		Page
III-8	Correlation between myeloid surface	
	marker expression and FAB-classifi-	
	cation system	52
III-9	Staging and classification of	
	Hodgkin's disease	59
III-10	Leu-M ₁ Immunoreactivity for RSCs	
	in different stages of Hodgkin's	
	disease	66
III-11	A working formulation of non-	
	Hodgkin lymphomas for clinical use	69
III-12	Reactivity of B-cell antibodies	
	with malignant lymphomas	81
III-13	Comparative expression of T-cell	
	antigens in T-cell lymphomas	85

LIST OF FIGURES

Fig. No.	After Page
II-1.	Making a monoclonal antibody 4
II-2.	Strategies for making and screening monoclonal antibodies to human tumour antigens 7
II-3.	A Schematic drawing of polyclonal and monoclonal antibody production following immunization of a mouse 19

LIST OF ABBREVIATIONS

Ab : Antibody

ABMT : Autologous bone marrow transplantation

ADCC : Antibody dependent cell mediated cytotoxicity

Ag : Antigen

ALL : Acute lymphoblastic leukaemia

AML : Acute myeloid leukaemia

ANLL : Acute non-Lymphoblastic leukaemia

B-ALL : B-cell acute lymphoblastic leukaemia

C₃ : Complement 3

CALLA : Common acute lymphoblastic leukaemia antigen

CD : Cluster differentiation

CIg : Cytoplasmic immunoglobulin

Cu : Cytoplasmic u-heavy chain

EBV : Epstein Barr virus

FAB : French - American - British

FACs : Fluorescence activated cell sorter

HAT : Hypoxanthine, aminopterin and thymidine

HCs : Hodgkin's cells

HD : Hodgkin's disease

HLA : Histocompatibility antigen

HPRT : Hypoxanthine phosphoribosyl transferase

Ig : Immunoglobulin

Kd : Kilo dalton

LL : Lymphoblastic lymphoma

MAb : Monoclonal antibody

MF : Mycosis fungoides

NB : Neuroblastoma

NSE : Neurone specific enolase

PAbs : Polyclonal antibodies

RSCs : Reed-Sternberg cells

SmIg : Surface membrane immunoglobulin

T-ALL : T-cell acute lymphoblastic leukaemia

T B : B subunit of T-cell receptor antigen

TdT : Terminal deoxynucleotidyl transferase

TL : Thymic leukaemia.

INTRODUCTION

The immortalization of specific antibody-producing cells, first reported by Kohler and Milstein, in 1975, rapidly led to widespread application of monoclonal antibodies (MAbs) in research laboratories and in clinical diagnostic medicine. The Nobel prize in medicine was recently granted for this work (David and Gordon, 1985).

MAbs are identical antibodies with the same binding specificity that can be generated in unlimited amounts by construction of continuous cultures of single Ab-secreting cells. These cell lines are produced by cell fusion of lymphocytes of an animal that produces desired Ab to cells of a myeloma tumour cell line, which confers, on the Ab-producing hybrid cell, immortality and the ability to grow as a tumour in animals. The Abs are replacing conventional polyclonal antisera in immunologic assays and are being widely applied to the study of the pathogenesis and to the diagnosis and treatment of childhood diseases (Richard et al., 1983).

The advent of monoclonal technology has been followed by a stream of reports of tumour-associated antigens with diagnostic or therapeutic potential.

Most such reports have arisen from the empirical practice of raising large numbers of Abs against tumour cells and then screening each Ab for its reactivity with a range of tissues. Any Ab showing a potentially useful specificity can be selected for bulk preparation without knowing anything about the target antigen apart from its apparent tissue distribution. The greatest number of such Abs have been raised against leukaemias and lymphomas (Glennie and Stevenson, 1985).

- II -

GENERAL CONSIDERATIONS

A major focus for cancer immunologists has been the identification of cell-surface Ags that are uniquely expressed by tumour cells. Historically, the most objective approach used to define Ags expressed by human malignant cell surfaces has been to develop hetero-antisera by immunizing animals with malignant cells (Bernstein et al., 1985).

Tumour cells, like normal cells have innumerable cell surface antigenic determinants, including those on receptors, histocompatibility molecules, blood group molecules, and differentiation molecules. Although not absolutely tumour-specific, some of these determinants are expressed by few types of normal cells and may therefore serve as operationally specific markers for tumour diagnosis and therapy (Seeger et al., 1982).

What is a monoclonal antibody ?

The immunological response to any foreign antigen is polyclonal: many different clones of B lymphocytes are stimulated to produce Abs. These Abs have different molecular structures and in turn recognise different

- 4 -

molecular conformation patterns on the stimulating antigen; the antigenic determinants. MAbs occur naturally in patients with multiple myeloma. Here neoplastic transformation occurs in a clone of B lymphocytes with the result that large quantities of identical Ig molecules are produced. It was by using myelomas that the chemical structure of the Ig molecule was discovered (Sikora, 1982).

Production of MAbs : (Fig. II-1 and Fig. II-2)

Mice are immunized with Ag by the intraperitoneal or I.V. route to induce a primary antibody response. After an interval, the animal is reimmunized and 3 to 4 days later, the mouse is killed and splenectomized; the spleen cells are then collected.

A suspension of the spleen cells is incubated with a suspension of murine myeloma cells in the presence of polyethylene glycol, an agent that promotes cell fusion (Kohler and Milstein, 1975). Activated spleen cells preferentially fuse with myeloma cells. The number of hybrids formed by cell fusion is few in comparsion with the number of myeloma cells.

Tumour cell surface
 (complex antigen)

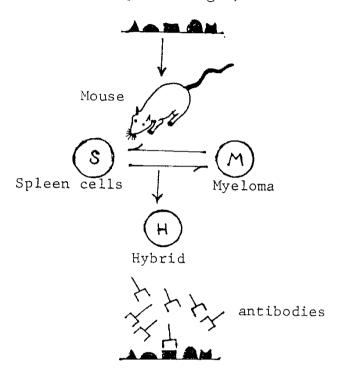


Fig. II-1. Making a monoclonal antibody. A complex antigen, such as a tumour cell surface, is used to immunise mice. The spleen cells(s) are removed and fused with a myeloma line (M). Hybrids are cloned and those antibodies binding to the antigen selected (Sikora, 1982).