1571 18

ANALYSIS OF "SHEAR WALLS SUPPORTED ON FRAMES"

M.SC Thesis submitted By
ENG. AYMAN ABO EL FETOH ABEDEL MAKSOUD

B . SC ., (Honours), 1983, Structure Engineering

Department, Faculty Of Engineering, Ain Shams University

Cairo

Under The Supervision of Prf.Dr.AHMED ABDEL MENAEM KORASHY

Professor of theory of structures, Ain Shams University

And

ny kik

Ass. Prof.Dr. MOSTAFA KAMEL ZIEDAN

s. Professor of theory of structures, Ain Shams University

A Thesis Submitted To The

FACULTY OF ENGINEERING, AIN SHAMS UNIVERSITY, CATRO

For The Degree Of
MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

JUNE 1987

بسياسه الرهن الرحير وفال سيرو (في علما

صدف الله العظم

Prof.Dr.SAAFAN ABDEL GOUAD SAAFAN S. A. Scrafor > (Head of structural engineering departement, Ain Sams University)

Prof.Dr.MOHAMED AHMED KASEM

(Head of Civil engineering departement, Monofeia University)

Prof.Dr.AHMED ABDEL MENAEM KORASHY

Prof. of theory of structure, Faculty of Engineering, Ain Shams University.

ACKNOWLEDGEMENTS

The author would like to express his deepest thanks, gratitude and appreciation to Prof.Dr.Eng.AHMED.

A.E.M.KORASHY; Prof. of theory of structures, Faculty of engineering, Ain Shams University, for suggesting and supervising the work and for his constructive criticisms and his cincere co-operation and support through this work.

The author is fully indebted to Dr.Eng.MOSTAFA.K.ZIDAN; Assistant Prof. of theory of structures, Fuculty of Engineering, Ain Shams University, for his supervision and guidance through this work, his suggestion of the problems. his follow up and his keen interest formed the back-bone of the study.

The author also wishes to extend his thanks to the staff of theory of structure department and computer center of Faculty Of Engineering, Ain Shams University, Cairo, for their contribution in the computation contained in this work.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	
INTRODUCTION	1
CHAPTER (1) LITERATURE SURVEY	
(1-1) Shear walls subjected to horizontal loads	4
(1-2) Shear walls subjected to vertical loads	9
(1-2-1) Solid shear wall	10
(1-2-2) Pierced shear wall	12
CHAPTER (2) STRUCTURAL ANALYSIS OF COUPLED SHEAR WA	AT.T.
SUPPORTED ON RIGID FRAME	
(2-1) Introduction	15
(2-2) Finite elements approach	16
(2-2-1) Finite elements with rotational degr	rees
of freedom	17
(2-2-2) Derivation of the three degrees of f	Freedom
element stiffness matrix	19
(2-2-4) The computer program	22
(2-3) Frame idealization method	29
(2-3-1) Derivation of the element stiffness	matrix
for the general frame element	30
(2-3-2) The computer program	36
(2-4) Cmparative study between the frame idealiza	ation
method and the plane stress finite element	method36
(2-4-1) Geometry of treated examples	37
(2-4-2) Discussion of results	40

CHAPTER (3) THE EFFECT OF CURTAILMENT ON THE STRUCTURAL BEHAVIOUR OF COUPLED SHEAR WALLS

(3-1) Introduction	50
(3-2) The composite action in coupled shear wall	s51
(3-3) Slenderness of the supporting columns	53
(3-3-1) Geometry of studied curtailed coupl	eđ
shear wall	53
(3-3-2) Symboles used in the comparative st	udy54
(3-3-3) Representation of results	55
(3-3-4) Discussion of results	57
(3-3-4-1) Deflection	57
(3-3-4-2) Internal forces in the wall	64
(3-3-4-3) Moment in the connecting beams	65
(3-3-4-4) Stress in the columns	66
(3-4) Opening position	66
(3-4-1) General	66
(3-4-2) Geometry of studied walls	67
(3-4-3) Symboles used in the comparativ stu-	dy69
(3-4-4) Representation of results	71
(3-4-5) Discussion of results	71
(3-4-5-1) Deflection	71
(3-4-5-2) Internal forces and stresses i	n columns
(3-4-5-3) Internal forces in the wall	79
(3-5) The level of curtailment	80
(3-5-1) General	80
(3-5-2) Configuration of studied curtailed	walls81

(3-5-3) Representation of results	85
(3-5-4) Discussion of results	90
(3-5-4-1) Deflection	90
(3-5-4-2) Stresses in columns	90
(3-5-4-3) Internal forces in the wall	91
(3-6) The number of soft stories	92
(3-6-1) General	92
(3-6-2) Configuration of studied curtaile	d walls93
(3-6-3) Symboles used in the parametric s	tudy93
(3-6-4) Representation of results	96
(3-6-5) Discussion of results	101
(3-6-5-1) Deflection	101
(3-6-5-2) Internal force in the suppor	ting columns
(3-6-5-3) Internal forces in the wall	103
(3-7) The height of the wall	104
(3-7-1) General	104
(3-7-2) Configuration of studied walls	104
(3-7-3) Representation of results	107
(3-7-4) Discussion of results	107
(3-7-4-1) Deflection	
(3-7-4-2) Internal forces	109
(3-8) Double-bay curtailed coupled shear wall	110
(3-8-1) General	110
(3-8-2) Configuration of studied wall	110
(3-8-3) Symboles used in the comparative	study112
(3-8-4) Discussion of results	113
(3-8-4-1) Deflection	113
(3-8-4-2) Stress in columns	115

	(3-8-4-	3) Internal forces in the wall	117
CHAPTER	(4) THE	INTERACTION OF CURTAILED WAL	L WITH OTHER
	ST.	RUCTURAL ELEMENTS.	
(4-1)	Introduct	ion	120
(4-2)	Curtailed	shear wall-frame interaction	121
	(4-2-1)	Simplified idealization of the	shear wall-
		frame system	121
	(4-2-2)	Lateral stiffness	123
	(4-2-3)	Models	126
	(4-2-4)	Studied parameters	129
	(4-2-5)	Representation of results	
	(4-2-6)	Discussion of results	137
(4-3)	Braced cu	ctailed shear wall	139
	(4-3-1)	General	139
	(4-3-2)	Braced curtailed pierced shear	wall141
	(4-3-3)	Representation of results	144
	(4-3-4)	Discussion of results	150
	(4-3-5)	Braced curtailed solid wall	151
	(4-3-6)	Representation of results	153
•	(4-3-7)	Discussion of results	156
CHAPTER	(5) SUGGES	STED SIMPLIFIED METHOD FOR THE .	ANALYSIS
	OF CURTA	AILED SHEAR WALLS SUBJECTED TO	HORIZONTAL LOADS
(5-1)	Introducti	on	
(5-2)	SCHWAIGHOR	FER and MICROY's method	158
(5-3)	BRYAN STAF	FORD's method	161
(5-3-1) Ger	neral	161

.......161

(5-3-2) Modified moment of inertia	163
(5-4) Suggested simplified method	164
(5-4-1) Check the effeciency of the suggested	
simplified method	166
(5-4-2) Results of the comparative study	168
(5-5) Extending the suggested method to the ur	n-symmetrical
wall	170
(5-5-1) New modification factor	170
(5-5-2) Check the effeciency of the exten	ıded
method	170
(5-5-3) Results of the comparative study	172
CAPTER (6) CURTAILED COUPLED SHEAR WALLS ON ELAS	
(6-1) Introduction	
	175
(6-2) Modulus of subgrade reaction	176
(6-3) Finite beam on elastic foundation	177
(6-4) Derivation of the element stiffness matr	ix
for beam on elastic foundation	180
(6-5) Computer program	183
(6-6) First parametric study (effect of change	of
wall span)	185
(6-6-1) Models of single and double bay $c\iota$	ırtailed shear
walls	185
(6-7) Discussion of the results	189
(6-7-1)Single-bay shear wall subjected to	vertical
loads	189
(6-7-2) Double-bay shear wall subjected to	vertical
load	193

(6-7-3) Double-bay shear wall subjected to horizontal
	loads
	••••• 20
(6-8) Secon	d parametric study (changing the properties of
the s	ubstructure)20
(6-8-1) Types of investigated shear walls20
(6-9) Discu	SSion of results
	• • • • • • • • • 21.
(6-9-1) Single-bay shear wall subjected to vertical
	loads212
(6-9-2)	Double-bay shear wall subjected to vertical
	loads221
(6-9-3)	Double-bay shear wall subjected to horizontal
	loads223
CONCLUSION	223
	224
APPENDICIES	230
REFRENCES	236

INTRODUCTION

High rise buildings subjected to wind and / or seismic loads need certain structural elements to resist such loads. The most common used structural system in these buildings is the shear walls system. For many archtectural purposes, a curtailment process for the shear walls may be excuted in ground and lower stories to obtain large areas available for garages and office buildings. The curtailment process is the task by which the shear walls are replaced by frames.

The aim of the present thesis is to investigate the effect of the curtailment process on the structural behaviour of shear walls subjected to lateral loads. The behaviour of these curtailed shear walls when they are supported on elastic foundations is also examined. Three computer programes are written especially for the analysis of such irrational walls.

The thesis contains six chapters and four appendices.

In the first chapter, some imperical equations used in evaluating the internal forces and stresses in curtailed shear walls subjected to both vertical and horizontal loads are presented.

The second chapter presents two different methods used

previously to analyze the curtailed shear walls. The first method uses the well-known technique of finite elements while the second one is the frame idealization method. Two computer programs are prepared to fit these two approaches. A comparative study was carried out on practical curtailed walls to check the correspondence between the results of both approaches.

The third chapter comprises a comprehensive parametric study to investigate the effect of the curtailment process on the structural behaviour of the walls. The following different parameters are included in the study:

- (a) the slenderness of the supporting frames's columns.
- (b) the openings position.
- (c) the curtailed level.
- (d) the number of curtailed stories.
- (e) the wall height.
- (f) the number of bays.

Chapter (4) deals with the curtailed shear wall-frame interaction in sustaining lateral loads. The behaviour of braced curtailed shear walls is also investigated.

In chapter (5) an approximate simplified method for the analysis of curtailed shear walls is presented. This method has the advantage of using standard plane frame computer programs to describe the structural behaviour of

such walls. The merit of the proposed method is judged by comparing its results with those of the more comprehensive methods through a comparative study on both symmetrical and un symmetrical walls.

The behaviour of curtailed shear walls supported on elastic foundations is the subject of chapter (6). The parameters affecting this behaviour, such as the wall geometry, the factor of soil subgrade reaction and the foundation rigidity, are examined. A computer program dealing with this study was prepared.

The comprehensive study carried out in the present thesis provides a wide practical base in the field of the predication of the structural behaviour of curtailed shear walls. Design curves are presented, conclusions are given and recommendations for future expansion are specified.

CHAPTER (1)

LITERATURE SURVEY

(1-1) Shear walls subjected to horizontal loads

The usefulness of walls in the structural planning of multistory building has long been recognized. When walls are situated in advantageous position in a building, they can be very efficient in resisting lateral loads originating from wind or earthquakes.

Different methods has been presented for the analysis of the shear walls subjected to lateral horizontal loads. In 1962, BECK, established the continuous mediuum method for analyzing symmetrical interconnected shear wall structures (Fig. (1-1-a)). In this method, the system of interconnecting beams is assumed replaced by a continuous medium with equivalent but distributed structural properties. A differential equations is written for the analogous structure and solved to determine the actions. In 1967, the previous method was extended by COULL, to be used in case of symmetrical as well as unsymmetrical interconnected shear wall using a family of curves for evaluating both the stress and the deflection along the wall height.

The second common method used in the analysis of shear wall, is the equivalent wide column frame method.