

Effect Of Lead, Barium And Zinc Oxides On The Physical Properties Of BoroSilicate Glass

Thesis Submitted in Partial Fulfillment for the Master Degree Of Science (Physics)

Ву

Ahmed Mohamed Al-Sayed Ali

B.Sc. 1989 Ain Shams University

To Physics Department Faculty Of Science Ain Shams University ()

1995

pedis =

Cpus

ACKNOWLEDGMENT

Acknowledgment

I wish to express my thanks to Prof. Dr. M.A. El-Sharkawy, head of physics department, faculty of science, Ain Shams university, for his interest and encouragement.

I would like to express my sincere thanks to Prof. Dr. M.Medhat, professor of physics, faculty of science, Ain Shams university, for his supervision, continues interest and valuable help.

My deep thanks also to Prof. Dr. A.M. Abou Sehly, head of physics department, faculty of science, Al-Azhar university, Assiut, for his supervision, providing all facilities during the progress of this work.

My deep thanks also to Dr. Said Abd El-Mainaim, Assistant professor of physics, faculty of science, Al-Azhar university in Cairo, for suggesting the point, and for much experimental assistance.

Great thanks to all my colleges and friends in the physics department, Ain Sharns university, and Al-Azhar university, for the big help and numerous support while I was preparing my thesis.

ABSTRACT

Abstract

Ahmed Mohamed Al-Sayed Ali. Effect of Zinc, Barium, and lead Oxides On the Physical Properties Of The BoroSilicate Glass, Thesis submitted for degree of M.Sc. in physics.

Sample preparation:

33 mole% Li_2O + 33 mole% B_2O_3 + 34 mole% SiO_2 , was prepared as a base; three series of samples were obtained by adding ZnO, BaO, and Pb_3O_4 to the base with concentrations 3, 6, 9, 12, and 15 mole%, where the number of samples was then sixteen.

Density, refractive index, differential scanning calorimeter (DSC), Dielectric properties, de and ac electrical conductivities measurements were performed on these samples.

Τt was found that the addition of lead and barium oxides increases the density. volume, and refractive index; it also decreases the glass transition temperature T_{σ} and the conductivities of the samples. Lead oxide affects the above properties very much more than barium oxide, except the molar volume.

Addition of zinc oxide increases the density and the refractive index; it also decreases the molar volume, glass transition temperature, and the electrical conductivity.

Electric moduli of all samples were fitted very good by the stretched exponential Kohlrousch-Williams-Watt (KWW) function; where the addition of lead and barium oxides decreased the β value, whereas the addition of zinc oxide kept the β value constant.

Keywords: Glass; Silicate glass; Borate glass; BoroSilicate glass; Alkali Silicate glass; Alkali Borate glass; Alkali BoroSilicate glass; Ionic glass; Relaxation process; Electric conductivity; Glass transition temperature; Electric modulus; Electric conductivity relaxation.

CONTENTS

Contents

Acknowledgment Abstract			page i	
			ii-iii	
Cha	pter 1 <i>Introdi</i>	uction	1-17	
1.1	General Aspect	is	1-4	
1.2	Glass Forming Oxides		4-4	
1.3	Some Glass Fai	nilies	5-9	
	1.3.1 Vitreous Si	lica	5-5	
	1.3.2 Soda-Lime	Glasses	5-6	
	1.3.3 Lead Silica	te Glasses	6-6	
	1.3.4 Aluminosili	icate Glasses	6-6	
	1.3.5 Other Silica	a-based Oxide Glasses	6-6	
	1.3.6 Borosilicate	Glasses	7-8	
	1.3.7 Other non-s	silica-based Oxide Glasses	8-8	
	1.3.8 Halide Glas	sses	8-8	
	1.3.9 Chalcogeni	des and Chalcohalides		
	Glasses		9-9	
1.4	Structural The	ories of Glass Formation	9-12	
	1.4.1 Goldschmid	It's Criterion for Glass		
	Formation		9-9	
	1.4.2 Zachariaser	i's Random Network		
	Hypothesis		10-11	
	1.4.3 Smekal's M	ixed Bonding Hypothesis	11-11	
	1.4.4 Sun's Bond	-strength Criterion of Glass		
	Formation		12-12	
1.5	Ionic Conduction		12-15	
	1.5.1 Introduction	1	12-13	
	1.5.2 Mechanism	s of Diffusion	12 15	

16	Superionic Materials	page 15-16
	Aim of the present work	17-17
1.7	Aim of the present work	17-17
Cha	pter 2 Theory of The Used Methods	18-46
2.1	Temperature Dependence of Ionic	
	Conduction	18-19
2.2	Models for Ionic Transport	19-21
2.3	Measurement of Electrical Conductivity	y 21-26
2.4	Dielectric Properties of Glasses	26-46
	2.4.1 Model for Conductivity Relaxation	31-34
	2.4.2 Pure Imaginary Laplace Transform of	
	(KWW) Function	35-37
	2.4.3 Other Models for Conductivity	
	Relaxation	37-37
	2.4.3 Electrical Conductivity Relaxation	39-40
	2.4.5 Frequency-Dependent Conductivity	40-44
	2.4.6 Some Physical Meanings of β or n	45-46
Cha	pter 3 Experimental Techniques	47-55
3.1	Sample Preparation	47-50
	3.1.1 Melting and Quenching	47-48
	3.1.2 Samples Polishing for Optical and	
	Electrical Measurements	48-50
	3.1.3 Sample Preparation for X-ray and DSC	·
	Measurements	50-50
3.2	Electrical Conductivity Measurements	50-53
3.3	Refractive Index Measurements	53-53