A STUDY OF 1,25 DIHYDROXYCHOLECALCIFEROL IN RACHITIC EGYPTIAN INFANTS

THESIS

Submitted for Partial Fulfilment of M.D. DEGREE
In
PEDIATRICS

By ZEINAB AWAD EL SAYED M.B.B.Ch., M.Sc.

SUPERVISED BY

Prof. Dr. MAHMOUD ESSAWY

Prof. of Pediatrics
Faculty of Medicine
Ain Shams University

Prof. Dr. SALWA MOHAMED EL HUSSEINY
Prof. of Biochemistry
National Research Centre

Dr. MOHAMED SALLAH EL DIN EL KHOLY
Ass. Prof. of Pediatrics
Faculty of Medicine
Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1988

ACKNOWLEDGEMENT

It has been a real honour to me to work under the supervision of Professor Dr. MAHMOUD ESSAWY, Professor of Pediatrics, Ain Shams University. I am deeply indebted to him for his encouragement and support.

I am also indebted to Professor Dr. SALWA MOHAMED EL HUSSEINY, Professor of Biochemistry, National Research Centre, for her kind supervision and guidance.

I am really grateful to Professor Dr. MOHAMED SALAH EL-DIN EL KHOLY, Assistant Professor of Pediatrics, Ain Shams University. I could never forget his excellent supervision and sincere help throughout this work.

I also appreciate the help and valuable advice of Dr. GIHAN HASSAN ALY Lecturer of Clinical Pathology, Ain Shams University.

My thanks are also due for Dr. AZZA GABR, Assistant Lecturer of Pediatrics, National Research Centre for her help in the practical part of this work.

CONTENTS

	Page
LIST OF ABBREVIATIONS	i
LIST OF FIGURES	ii
LIST OF TABLES	iv
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	3
- VITAMIN D	3
- Sources	3
- Requirements	4
- Metabolism	6
- Functional significance of vitamin D meta-	
bolites	14
- Actions of 1,25 dihydroxyvitamin D	19
- Regulation of vitamin D metabolism	30
- Factors affecting vitamin D status	37
- Vitamin D in human milk	4 5
- Preparations of vitamin D	4 7
- Measurement of vitamin D and its major	
metabolites	49
- RICKETS:	54
- Vitamin D deficiency rickets	54
- Metabolic bone disease of prematurity	66
- Congenital rickets	67
- Adolescent Asian rickets	68
- Rickets due to malabsorption	68
- Rickets in hematic diseases	69

	listy,
- Anticonvulsant therapy and rickets	70
- Vitamin D dependent rickets	7.3
- Familial hypophosphatemic rickets	7.4
- Fanconi Syndromes	76
- Oncogenous rickets	78
- Hypervitaminosis D	78
MATERIAL AND METHODS	83
RESULTS	103
DISCUSSION	132
SUMMARY AND CONCLUSIONS	147
REFERENCES	152
ARABIC SUMMARY.	

* * * * *

ABBREVIATIONS.

25 OHD 25 hydroxvitamin D

1,25(OH)₂D 1,25 dihydroxyvitamin D

24,25(OH)₂D 24,25 dihydroxyvitamin D

25,26(OH)₂D 25,26 dihydroxyvitamin D

IL₁ Interleukin 1

IL₂ Interleukin 2

IL₃ Interleukin 3

T₅ Triiodothyronine

FeCa Fractional excretion of calcium

U Urinary

S Serum

PTH Parathormone

UV Ultraviolet

AP Alkaline phosphatase

P Phosphorus

Ca Calcium

X Mean

SD Standard deviation

A Active

Hg Healing

Hd Healed

F Female

M Male

CaBP Calcium binding protein

DHT Dihydrotachysterol

25 OHDHT 25 hydroxydihydrotachysterol.

LIST OF LIGHTER

			Pag
Fig.1	:	Irradiation formation of vitamin $D_{\overline{5}},\ldots$	5
Fig.2	:	Metabolism of vitamin D	7
Fig.3	;	The 1 $lpha$ hydroxylase system which forms	
		1 α ,25-dihydroxyvitamin D_3 from 25-hydroxy-	
		vitamin D ₃	9
Fig.4	:	Chemical structures of vitamin D_3 metabolites	5 11
Fig.5	:	Working hypothesis for 1,25(OH) $_2\mathrm{D}_3$ mechanism	17
Fig.6	:	Model for regulation of the biosynthesis of	
		1,25(OH) ₂ D ₅	32
Fig.7	:	Relationship between breast milk vitamin D	
		and vitamin D intake	44
Fig.8	:	Effect of sun exposure and breast milk vit-	
		amin D, on the vitamin D status of the	
		infant	57
Fig.9	:	Standard curve for 1,25(OH) ₂ D	96
Fig.10	:	Mean and standard deviation of serum alka-	
		line phosphatase of control and rachitic	
		patients before therapy and at every .	
		follow up ·····	122
Fig.11	:	Mean and standard deviation of serum phos-	
		phorus of control and rachitic patients	
		before therapy and at every follow	
		up	123
Fig.12	:	Mean and standard deviation of serum cal-	
		cium of control and rachitic patients	
		before therapy and at every follow	
		un	124

. . .

		Page
Fig. 13 :	Mean and standard deviation of serum 1,23	
	$(\mathrm{OH})_2\mathrm{D}$ of control group and rachitic	
	patients before therapy and at every	
	follow up	125
Fig. 14 :	Mean serum calcium, phosphorus, alkaline	
	phosphatase and 1,25(OH) ₂ D values of ra-	
	chitic patients before therapy and	
	at every follow up	126
Fig. 15 :	Mean and standard deviation of alkaline	
	phosphatase of control and patients with	
	active, healing and healed rickets	127
Fig. 16:	Mean serum calcium and phosphorus of	
	control group and patients with active,	
	healing and healed rickets	128
Fig. 17 :	Mean and standard deviation of serum 1,25	
	$(OH)_2D$ of control and patients with active	
	healing and healed rickets	129
Fig. 18 :	Relationship between serum phosphorus	
	and serum 1,25(OH) $_2\mathrm{D}$ concentrations of the	
	control group	130
Fig. 19 :	Relationship between serum alkaline phos-	
	phatase and serum 1,25(OH) $_2\mathrm{D}$ concentration	
	of the rachitic patients before therapy	131

LIST OF TABLES

Table 1: Mean height velocity (cm/year) and mean	
1,25-(OH) ₂ D at different ages	. 4
Table 2: Types of rickets	5.5
Table 3: Collective data of the control group	4
Table 4: Collective data of patients with nutri-	
tional rickets before therapy (group	
IIa), and at every follow up (group IIb -	
Ilf)11	5
Table 5: Comparison of the mean values of alka-	
line phosphatase, phosphorus, calcium	
and 1,25(OH) ₂ D of rachitic patients	
before treatment and at every follow up	
visit with the values of the control group 11	6
Table 6: Comparison of the mean values of alkaline	
phosphatase, phosphorus, calcium and 1,25	
(OH) 2D of rachitic patients before treat-	
ment, with the values of patients at each	
follow up 11	7
Table 7: Comparison of the mean values of alkaline	
phosphatase, phosphorus, calcium and 1,25	
(OH) 2D of rachitic patients with tetany,	
rachitic patients without tetany and the	
control group 11	8

		Page
Table 8 :	Mean values of alkaline phosphatase,	
	phosphorus, calcium and 1,25(OH) ₂ D of	
	patients with active rickets, patients	
	with healing rickets and patients with	
	healed rickets in comparison with the	
	mean values of control group	119
Table 9 :	Comparison of the mean values of alka-	
	line phosphatase, phosphorus, calcium	
	and 1,25(OH) ₂ D of patients with active	
	healing and healed rickets	120
Table 10:	Percentage of patients with roentogeno-	
	graphic evidence of active, healing, or	
	healed rickets after every vitamin D	
	injection	121

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Rickets is still a prevalent disease in Egypt. It is reported to affect as many as 12-13% of Egyptian infants (Awwaad et al., 1975). The rickets seen in Tropical and North African countries in which children, seemingly, recieve enough sunlight, is difficult to explain. (Srikantia, 1984).

Vitamin D plays a major role in regulating calcium and phosphorus homeostasis and in controlling the mineralization of bones and teeth (Forfar and Arneil, 1984).

It is now established that vitamin D is a prohormone, that is ultimately converted to a hormone, 1,25 dihydroxy-vitamin D (Martin et al., 1983). This hormone is 10 times more active than vitamin D itself and exerts its effects on many organs and tissues of the body (Deluca and Schnoes, 1983).

Extensive work has been and is being done to study the level of 1,25(OH)₂D in normal persons as well as in many disease states including osteomalacia and different types of rickets. However, studies concerning the level of 1,25(OH)₂D in nutritional rickets are few and most of them dealt—with very limited number of cases.

It was observed that rachitic Egyptian infants require, and can tolerate very well, repeated large doses of vitamin D to achieve healing of their rachitic process (Khalifa et al., 1971 and El-Sallab et al., 1985).

We have noticed that a good number of patients could not achieve complete healing after recieving the usual course of vitamin D therapy which consists of three doses of 600,000 units of vitamin D.

Hence this work is conducted with the aim of studying the serum level of $1,25(\mathrm{OH})_2\mathrm{D}$ in rachitic Egyptian infants as a reflection of their vitamin D metabolism and its relation to the levels of serum calcium, phosphorus and alkaline phosphatase as well as to the roentogenographic changes. Also this work is conducted to study the changes in the concentration of $1,25(\mathrm{OH})_2\mathrm{D}$ induced by treatment, aiming at evaluating the appropriateness of our therapeutic regimen.

REVIEW OF LITERATURE

VITAMIN D

Vitamin D is a prohormone of a sterol type (Martin et al., 1983). It exists mainly in two forms, vitamin D_2 or ergocalciferol and vitamin D_3 or cholecalciferol (Herman, 1981). The D vitamins, D_2 and D_3 , are generated from the provitamins, ergosterol and 7-dehydrocholesterol, respectively, by ultraviolet irradiation (Meyers et al., 1980). Ergosterol and 7-dehydrocholesterol differ chemically only in the side chain at position 21. This difference for humans is apparently of no physiologic consequence (Bikle, 1987).

Sources of Vitamin D:

Vitamin D can be obtained from dietary sources or through endogenous synthesis in the skin (Haddad, 1979).

Dietary sources of vitamin D are few e.g. egg yolk, fatty fish, fish liver oil and milk fat. Cereals, vegetables and fruits contain negligible amounts (Fraser, 1983). However, milk, dairy products and infant formulas, are frequently fortified with vitamin D (Papapoulos et al., 1979).