DYNAMIC MOTION OF STRAW—AND PLANT PARTS THROUGH MECHANICAL MOWING SYSTEM

By

ESAM AHMED SOLIMAN EL-SAHAR

A thesis submitted in partial fulfillment

of

the requirement for the degree of

52387

DOCTOR OF PHILOSOPHY

in

Agricultural science (Agricultural Mechanization)

Department of Agricultural Mechanization

Faculty of Agriculture

Ain Shams University

1994

APPROVAL SHEET

DYNAMIC MOTION OF STRAW AND PLANT PARTS THROUGH MECHANICAL MOWING SYSTEM

By

ESAM AHMED SOLIMAN EL-SAHAR

B. Sc. Agric. (Mechanization) Ain Shams Univ., 1982.M. Sc. Agric. (Mechanization) Ain Shams Univ., 1988.

This t	hesis for Ph. D. degree has been approved by:
Prof.	Dr. / Mohammad Taher Fayed
Prof.	Dr. / Abd El-Kadder Ali El-Nakib
Prof.	Dr. / Mohammad Nabil El-Awady

Date of examination: Zi / 12 / 1994

ACKNOWLEDGMENT

The author wishes to express greatest appreciation and deepest gratitude to Prof. Dr. M. N. EL-Awady, Prof. of Agric, Engineering and Former Head of the Agric. Mechanization Dept., Fac. of Agric., Am Shams Univ. for suggesting the problem, close supervision progressive criticism, deep interest, remarkable encouragement and effective guidance throughout the investigation and preparation of the manuscript. His help and valuable personal advice are also appreciated.

The author wishes to extend his appreciation for all Staff Members of the Agric. Mechanization Dept., Fac. of Agric., Ain Shams Univ. for availing required facilities during the performance of the current work.

DYNAMIC MOTION OF STRAW AND PLANT PARTS THROUGH MECHANICAL MOWING SYSTEM

By

ESAM AHMED SOLIMAN EL-SAHAR

B. Sc. Agric. (Mechanization) Ain Shams Univ., 1982M. Sc. Agric. (Mechanization) Ain Shams Univ., 1988.

Under the Supervision of:

Prof. Dr. Mohammad Nabil EL-Awady
Prof. of Agric. Eng., Agric. Mech. Dept., Fac. of
Agric., Ain Shams University

ABSTRACT

The objective of this work was to study the motion of the straws and plant parts by a small rotary harvester during cutting and gathering operations of crop, until completely collected, and keeping the crop from destruction or loss in straw and grains of crops. The rotary harvester parts were locally made. Experiments were run on lawn; clover mowing, and wheat reaping.

Results indicated that straw remainder on the ground in wheat reaping increased from 35.1 to 42.5% when forward speed increased from 0.6 to 2 km/h, and stayed at 35.6% by increasing the cutting speed from 47 to 65.5 m/s. Using the gathering device with conveyor chain decreased straw remainder on the ground from 32.2 to 11% compared with conveyor belt. Grain losses increased from 6 to 9.2% when forward speed increased from 0.45 to 1.13 km/h. Meanwhile, losses increased from 4.7 to 7.3% with an increase in cutting speed from 35.3 to 65.5 m/s. Losses also increased from 3.5 to 9.2% when using the gathering device with flat conveyor belt as compared with conveyor chain. The front deflection of wheat stem increased by increasing the star

wheel diameter. Meanwhile, the side deflection increased by increasing the width of side deflector. Horizontal drop angle of wheat stems decreased by increasing the conveyor lugs speed, deflector length, and number of deflectors. But, drop distance of wheat panicles increased by increasing the conveyor lug speed, deflector length, and number of deflectors.

Key words

Rotary harvester; Straw remainder; Grain losses; Reaping; Mowing; Conveyor chain; Conveyor belt; Front deflection; Side deflection; Deflector; Lugs; Horizontal drop angle; Drop distance.

CONTENTS

	Page
INTRODUCTION	
REVIEW OF LITERATURE	1
1- Harvesting machinery	4
2- Machine parts	4
3- Power requirements for harvesting operation	6
4- Knife harvesting characteristics and cutting force.	9 11
5- Properties of crop during the harvesting	-
6- Harvesting losses	13
	15
MATERIALS AND METHODS	18
A- Materials	18
1- The rotary harvester (before modifications)	18
1.1- The engine	18
1.2- The frame and handles	21 21
1.3- The motion transmission	22
1.4- The wheels	22
1.5- The cutting subassembly	22
1.6- The gathering unit	25
2- The rotary harvester modification	28
2.1- The engine	28
2.2- The frame	28
2.3- The motion transmission	31
2.4- The cutting unit	31
2.5- The wheels	31
2.6- The gathering unit	34
3- Instruments and techniques.	34
3.1- Tachometer	34
3.2- Moisture content measurement	34
3.3- The torque brake 3.4. The spring dynamometer	34
3.5- Land and crops	34
B- Methods and measurements	36
1- Crop losses	36
1.1- Determining the straw remainder.	36
1.2- Determining the grain losses	40
2- Description of the wheat straw motion	40
2.1- Determining the center of gravity of the plant stem	42
2.2- Determining the moment of inertia of the plant stem	42
2.3- Determining the equivalent masses for plant stem	48
2.4- Determining the velocity and acceleration of stem motion	49
2.5- determining the resultant forces acting on plant stem	51

3- Power requirement	F-94
3.1- Engine power characteristics	5 1
3.2- determining the transmission power	51
3.3- determining the slip percent	53 53
3.4- determining the rolling resistance	54
3.5- determining the traction of the machine wheel	
3.6- determining the cutting power	54 55
3.7- determining the conveying power	55 55
4- Cutting efficiency	
5- Determining the filed travel speed	55 57
6- Rate of operation (productivity; filed capacity)	57
6.1- theoretical machine productivity	57
6.2- Effective machine productivity	5 7
7- Filed efficiency	58
	59
RESULTS AND DISCUSSION	60
1- Crop losses	60
1.1- Crop straw remainder	60
a- Clover mowing	60
b- Wheat reaping	62
1.2- Kinematics of star wheel motion	62
1.3- Crop grain losses	71
2- Motion of wheat crop through gathering device	73
a- The first stage	73 73
1- Diameter of star wheel	
2- Side-deflectors	77
3- Width of crop entrance	77
b- The second stage	77
1- diameter of the star wheel and side deflector	77 81
2- Peripheral velocity of the star wheel	81
3- Height of star wheel arm	
c- The third stage	81 81
1- Width and location of side deflectors	
2- star-wheel diameter	83 83
3- star-wheel velocity	63 83
4- Lugs height	
5- Speed of conveyor lugs	86 86
6- Number of conveyor chains	86
d- The fourth stage	
1- Number and height of spring wires	89 89
2- spring wire inclination	89
3- spring wire pressure	92
e- The fifth stage	92
1- Conveyor-chain speed	95
2- length of deflector	
3- Number of deflectors	95

4- Inclination of deflector	102
3- Power requirements for machine operation	102
3.1- Transmission system	107
3.2- Wheel slip	110
3.3- Slip of transmission belts	110
3.4- Rolling resistance	114
3.5- Traction of the machine wheel	117
3.6- The cutting power	120
3.7- The harvest conveying power	120
4- Cutting efficiency	123
5- Filed efficiency of the designed rotary harvester	125
a- Clover mowing	128
b- Wheat reaping	128
. 0	133
SUMMARY AND CONCLUSION	136
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

No	page
1. Moment of inertia and radius of gyration of a plant stalks.	
2. Effect of arm length, number of arms, and diameter of star wheel on	
V_m / V_s ratio (at $V_m = 1.2 \text{ km/h}$).	69
3. Effect of connecting different components of transmission system	
with power.	108
4. Wheel slip of the rotary harvester.	111
5. Rolling resistance of rotary harvester.	
6. Traction coefficient of machine wheel.	
7. Cutting power of the rotary harvester.	
8. Field condition and plant properties of different crops.	
9. Power components for rotary harvester working.	
10. Cutting efficiency of the rotary harvester.	
11. Effect of forward speed on field efficiency.	129
12. Field efficiency of the rotary harvester.	129

LIST OF FIGURES

No	Dag
1- The rotary harvester before modifications.	Pag
2- Side view of the designed rotary harvester,	19 20
3- Front view of the designed rotary harvester.	20
4- Belt transmission to rotary cutter,	
5- Cutting disc and cutter blades.	23
6- The gathering unit before modification,	23
7- The designed rotary harvester with tow lugged belts for side-ways raking.	24
8- The rotary harvester during the wheat reaping,	26
9- Motion of the wheat through the crop collecting device.	27
10- The rotary harvester after modifications.	27
11- The cutting box of the power transmission.	29
12- The cutting subassembly after modifications,	30
13- The modification gathering unit.	32
14- The torque brake.	33
15- The clover height - distribution before mowing.	35
16- The wheat height - distribution before harvesting,	37
17- The lawn height - distribution before mowing	38
18- Deflections in 3-directions for wheat stalks,	39
19- Horizontal angle and distance of the crop dropping from the machine.	41
20- Width of crop entrance, star wheel diameter and side deflector geometry of gathering unit.	41
21- Number and locations of conveyor chains and spring wires in gathering unit.	41
22- Inclinations of spring wire for gathering unit.	43
23- Lengths of spring wire for gathering unit.	43
24- Number and locations of deflectors on gathering unit,	43
25- Inclinations of deflector for gathering unit.	43
26- Determining the center of gravity of a stalk,	43
27- The center of gravity-distribution for wheat stems.	44
28- The center of gravity -distribution for clover stems,	45
29- The center of gravity-distribution for lawn stems,	46
30- Determining the moment of inertia of a plant stalk,	47
31- The equivalent masses for wheat stem,	50
32- The relative motion of e.g. of a plant stem.	50
33- Engine power characteristics at various throttle openings and contional speeds,	50
34- Arrangements of the cutter knives	52
35- Angles of the cutter knife edge.	56
36- Length of the cutter knife protrusion,	56
37: Effect of forward speed on stem remainder in clover mowing.	56
38: Effect of cutting speed on stem remainder in clover mowing.	61
39: Effect of forward speed on straw remainder in wheat reaping.	61
40: Effect of cutting speed on straw remainder in wheat reaping.	
41: Effect of conveyor of gathering device on straw remainder in wheat	63

		63
	reaping.	_
42:	Determination of the path described w.r.t ground by the star wheel of	64
42.	gathering device.	, ,
	Effect of arm length and number of arms on star wheel speed.	65
	Effect of star wheel diameter and number of arms on $V_{\rm III}/V_{\rm S}$ ratio.	70
45:	Effect of forward speed on total grain losses in wheat reaping (cutting	70
46.	speed: 47 m/s).	'
	Effect of cutting speed on total grain losses in wheat reaping.	72
	Different stages for stem motion with in gathering device unit.	72
48:	Effect of diameter and velocity of star wheel on front deflection in	7.4
40	wheat stems.	74
49:	Peripheral velocities along arm of star wheel at different the star wheel	
F.O.	diameters (forward speed of machine: 1.2 km/h).	75
50:	Peripheral velocities along arm of star wheel by using the formula	
	$(V_s = \frac{\pi_s D_{s_s} V_m}{n_s I_s}).$	76
51.		
	Effect of deflector width on total straw remainder in wheat crop.	76
	Effect of diameter of star wheel on moving crop in the cutting zone. Effect of number and width of side deflectors on side deflection in	78
JJ.	wheat stems.	79
51.		
	Wheat stem geometry and forces during the 2nd, stage.	79
<i>5</i> 5.	Effect of peripheral velocity of star wheel on stalk motion during the	80
57.	2 nd. stage.	
	Effect of star wheel arm height on stalk motion during the 2 trainstage.	80
	Wheat stem geometry and forces during the 3 rd. stage.	80
38:	Effect of side deflector width on inclination angle of stems against lug	82
5 Ω.	of conveyor chain.	
39.	Effect of star-wheel diameter on inclination stems against lugs of	82
κ0٠	conveyor chain. Effect of star-wheel velocity on stalk motion during the 3rd, stage.	84
	Effect of lugs height on wheat stems motion during the 3 rd, stage.	54 54
	Effect of lugs speed on stalk motion during the 3rd, stage.	ა ცე
	Effect of two conveyor chains on wheat stems motion through the 3	87
UJ.	rd.stage.	- •
61.	Wheat stem geometry and forces during the 4 th. stage.	
	Effect of number and height of spring wires on wheat-stem muchon during	87
U .J.	the 4 th. stage.	88
66.	Effect of spring-wire inclination on wheat-stems lift from cutting disc	
00.	during the 4th. stage.	88
67.	Effect of spring-wire inclination on wheat-stems motion in the 4th, stage.	
	Effect of spring-wires pressure on wheat-stems motion.	90
	Wheat stems motion and forces during the 5 th. stage.	90
	Effect of conveyor chain speed on horizontal drop angle and drop side	91
70.	distance of wheat stems during the 5 th, stage.	93
71.	Effect of conveyor chain speed on horizontal drop angle distribution of	
, .	wheat stems during the 5th, stage.	91
72.	Effect of conveyor chain speed on drop side distance distribution of wheat	
14.	Effect of conveyor chain speed on drop side distance distribution of wheat	97

	stems during the 5 th. stage.	
73:	Effect of length of deflector on horizontal drop angle of wheat stems during	96
	the 5 th. stage.	,,,
74:	Effect of length of deflector on drop side distance of wheat stems during the 5th, stage.	97
7 5.	Effect of deflector length on horizontal drop angle distribution of wheat	
	stems during the 5 th. stage.	97
76:	Effect of deflector length on drop side distance distribution of wheat stems	
	during the 5 th. stages.	98
77:	Effect of number of deflectors on horizontal drop angle of wheat stems	
	during the 5 th. stage.	99
78	Effect of number of deflectors on horizontal drop angle distribution of	_
	wheat	100
	stems during the 5 th. stage.	_
7 9:	Effect of number of deflectors on drop side distance of wheat stems during	100
	the 5 th. stage.	
8 0:	Effect of number of deflectors on drop side distance of wheat stems during	101
	the 5 th. stage.	
81.	Effect of deflector inclination on horizontal drop angle of wheat stems	103
	during the 5 th. stage.	
82.	Effect of deflector inclination on drop side distance of wheat stems during	104
	the 5 th. stage.	
8 3.	Effect of inclination of deflector on horizontal drop angle of value at stems	104
	during the 5 th, stage.	
84.	Effect of inclination of deflector on drop side distance of wheat stems	105
	during the 5 th. stage.	
85	Effect of connecting different rotary-components on engine speed.	106
	Effect of connecting different rotary -components on engine power.	109
	Effect of forward speed and soil surface on slip percent.	109
	Effect of engine speed on slip percent of different rotary components.	112
	Effect of shoes skidding of gathering device on soil surface on coefficient	
•	of rolling resistance.	113
90:	Effect of soil surface on coefficient of rolling resistance.	
	Effect of soil surface on coefficient of traction.	116
	Effect of crop mass on conveying power.	116
	Effect of knife lip-angle on cutting efficiency in lawn mowing	119
	Effect of plant intensity on cutting efficiency in lawn mowing	122
	Effect of forward speed on theoretical and effective productivities for	127
	clover mowing.	127
96:	Effect of forward speed on field efficiency for clover plot (30 × 3 m) and	
	wheat plot (3 x3 m).	130
97:	Effect of forward speed on theoretical and effective productivities for	
•	wheat reaping.	1.30
98:	Effect of S. L/ t_{turn} ratio and $r_{rep} + r_0$ percent on field efficiency of	
	rotary harvester.	131
99:	Effect of field length on field efficiency.	131

INTRODUCTION

Mowers can generally be used in harvesting forage, cereal and stalk crops such as cotton and corn. Importance of harvesting mechanization cannot be undermined in Egyptian conditions, where the predominant tools for harvesting wheat, barley, and rice are the sickles and scythes. Sickles are by for more in use than scythes. Hoes are used to remove the cotton stalks from the field after cotton picking. These tools have simply remained largely the some. At least they place heavy demand on human energy by increased work hours. They are responsible for low levels of production and increasing reluctance of laborers to work in agricultural sectors. In most cases, labor is not sufficient at the proper time so the operation goes very slowly resulting in high losses through grain shattering, (which accounts for up to 30% at present). In addition, the shortage in hand labor in Egyptian agriculture has become a pressing problem in the recent decade, especially during harvesting periods. This shortage, in turn, has increased the costs of mowing and handling. However, the expenses and scarcity of capital and the small size of the typical land units make it difficult to introduce expensive, heavy and complicated technology of type that serve in the U.S.A. or other countries where land units are large and capital is plentifull.

The importance of harvesting mechanization is due to the extent of area grown with forage, cereal crops and stalks in Egypt, and their seasons per year, as shown in the following table for importance crops (CAPM, 1993).

.

2

Season	Crop	Area, 1992
		(Million fed.)
Winter	Wheat	2.092
	Clover	2,542
Summer	Cotton	0.840
^, ,,	Rice	1,216
;;	Corn	2.222

The wide-scale mechanization of crop reaping has not prevailed so far (Nat. 5-yr. Plan for Mec., 1982).

For these reasons, Egyptian planners have turned toward concepts of increasing mechanization in farming operations to crop with seasonal shortage of labor. Partial mechanization of harvesting operation for small farms could speed up harvesting operation by replacing the slow hand cutting methods, so that the crop could be removed from the land and temporarily stored for subsequent threshing or processing.

What is needed instead is the selection or development of an intermediate technology suited to Egyptian conditions, available at a price that a small farmer can afford or rent; geared to the small land unit, and of a complexity within the farmer's ability to handle.

In previous work, a simple locally made mower was tested for appropriate speeds, geometry of cutters, and other factors pertinent to appropriate design and operation with alfalfa, lawn mowing, cotton-stalks cutting, and inter row weed control.

The objective of this study is to develop a method of predicting the forces acting on plant stems and parts mowed by a small rotary harvester during cutting and gathering operations of crop until completely collected. The rotary mower was designed and constructed in the Workshop of the Agricultural Mechanization Division, Faculty of Agriculture, Ain-Shams