STUDY OF DIODE LASER (USES & APPLICATIONS)

Essay

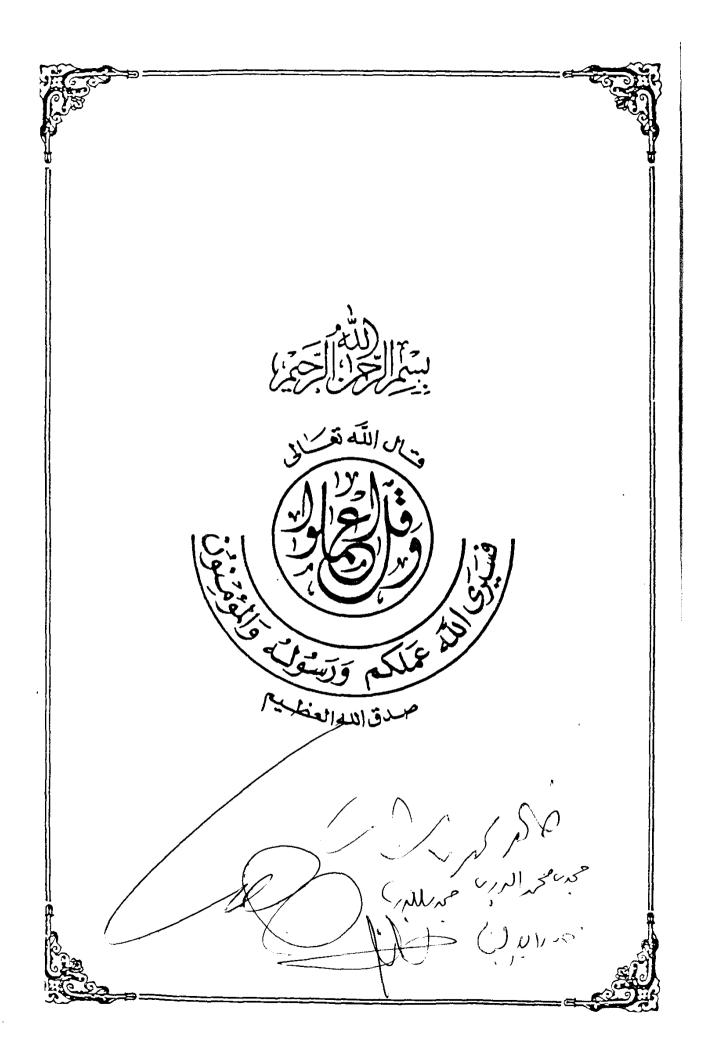
Submitted in partial fulfilment of the Master degree in Ophthalmologe

Ashraf Hassan Sabry M.B.B.Ch

63097

Under Supervision of

Prof. Dr. Mohamed Omar Rashed


Professor & Chairman of Ophthalmology Department

Ain Shams University

Ass. Prof. of Ophthalmology Ain Shams University

Faculty of Medicine - Ain Shams University 1994

To

my family

Acknowledgments

I would like to express my sincerest gratitude to **Prof. Dr. M. Omar Rashed**, Professor and Chairman of Ophthalmology

Department, Faculty of Medicine, Ain Shams University for proposing the topic of this essay. He was a constant source of quidance, constructive creticism and involvable encouragment through out development of this work.

I do appreciate the hard effort he did to harmonise and homounise the different parts of this essay.

I am really indebated to **Dr. Ahmad Abu El Naga**, Assistant Prof. of Ophthalmology, Ain Shams University, for his valuable assistance, generous help, useful contribution, kind supervision and continuous encouragement through out the whole work.

I would like also to express my deep gratitude to **Dr. Ahmaed Darwish** lecturer of ophthalmology Ain Sams University & **Dr.** Alla **Pathey** for thier great help in this work.

Lastly, I wish to extend my gratitude and thanks to all professors and staff members of the Ophthalmology Department, Ain Shams University, who contributed in deepening my knowledge in ophthalmology.

I. Acknowledgements

II. List of tables & Figures

III. Introduction

	Page
1- Historical aspects of laser	1-9
2- General principles of laser	10-24
3- Effects of laser on ocular tissues	26-31
4- Structure & Biophysics of diode laser	32-46
5- Diode laser convergence angle	47-52
IV. Diode laser & glaucoma	
• Diode laser trabeculoplasty in treatment of primary	
open angle glaucoma and ocular hypertension	54-70
Diode laser iridectomy	71-76
Diode laser cyclophotocoagulation	77-78
V. Diode laser & Retinal disorders	
• Introduction	79-86
• Mode of delivery of diode laser through ocular media	84-86
• Diode laser lesion	91-99
Mode of laser application in various disorders	99-100
Mchugh's study	100-105

	Page
• William simmedy's study	105-107
Diode laser for retinitis of prematurity	108-110
Diode laser & malignant tumours	111-112
• Comparison between diode, argon, and Krypton	
laser photocoagulation	113-119
VI. Other uses of diode laser	
1- Measurment of axial length of the eye	120-123
2- Photoablation of the cornea	124
VI English summary	125-131
VII References	132-141
VIII Arabic summary	142

List of tables & Figures

I. Figures :

1- Introduction

	Page
Fig 1-1 : Spontaneous emission of radiation	12
Fig 1-2 : Fluorescence	13
Fig 1-3: Laser emission	14
Fig 1-4: Typical laser cavity	17
Fig 1-5 : Continuous wave laser	21
Fig 1-6 : Q switched mode	22
Fig 1-7: Mode locked laser	23
Fig 1-8: Mechanism of stimulated light emission	34
Fig 1-9 : Double heterojunction diode laser	36
Fig 1-10 : Band structure detail	40
Fig 1-11: Fabry - Perot resonator cavity for diode laser	43
Fig 1-12 : a - typical diode laser 40 emitter array	46
b- Simplified diagram of :	
Semiconductor diode laser	46
Diode laser array	46
Fig. 1-13 · Position of laser focus relative to fundus	49

A. Introduction

	Page
1- Table 1-1: Mile stone of photocoagulation	3
2- Table 2-1 : Procedure landmarks	9
Table 1-3: Laser tissue interaction	. 27
Table 1-4: CW diode laser wave length	37
B- Diode laser & glaucoma	
Table 2-1: Changes in IOP induced by DLT	. 63
Table 2-2: Reduction in IOP by DLT	. 64
C- Diode laser & Retinal disorders	
Table 3-1: Comparison between diode laser & cryotherapy	
in IOP	. 109
Table 3-2 : Comparison between argon, Krypton & Diode	
laser	. 117
D- Other uses of diode laser	
Fig 4-1 : Optical principle of measurment of axial length of	
the eye	. 123

List of Abbrevations

AD : Since the Christ was born

ALT : Argon laser trabeculoplasty.

BC : Before christ was born.

BRVO : Branch retinal vein occlusion.

CRVO : Central retinal vein occlusion

CNVM: Choroidal neovascular membrane

CW: Continuous wave.

DLT : Diode laser trabeculoplasty.

Ga. Ai. As : Gallium. aluminum. arsenide.

 H_2O : water.

ILM : Internal limiting membrane

IOP : Intraocular pressure

IV : Intra venous.

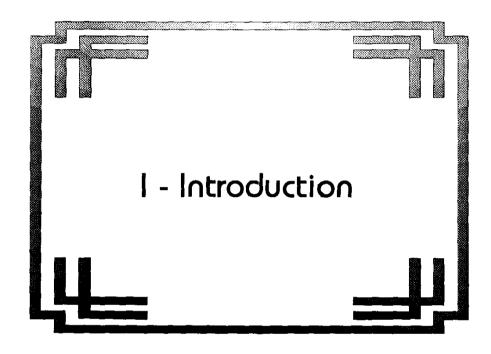
nm : nano meter

PAS : Peripheral anterior synechia.

PDR: Proliferative diabetic retinopathy.

POAG : Primary open angle glaucoma.

PVR : Proliferative vitreoretinopathy.


ROP : Retinitis of prematurity

RPE : Retinal pigment epithelium

SL: Slit lamp.

um : micrometer

W : Watt.

Introduction

The historical aspects of ophthalmic lasers are fascinating and exciting. The eyes, because of its precise structure, has been the recipient of a large amount of the transfer of technology from the physical to the biological science.

The effects of solar radiations was well known to the ancient, as the first description of central scotoma following solar burn of the retina was reported by **Theophilus Bonetus** (1620 - 1689) AD.

Czerny, Deutcmmann investigated the use of either sun or carbon arc to produce lesion in the retina. Maggior focused sun light on two enucleated eyes and then examined the eyes histologically.

In 1940, Moran Salas performed numerous experiments on human and rabbits eyes, to use light coagulation therapeutically and it was published in 1950.

Concurrently Meyer Schwickerath published his first experience with light photo coagulation in 1949.

Between 1945 - 1956, beck arc was used as a photocoagulation source.

In 1965, the high pressure xenon lamp was used as a photocoagulation source and the xenon arc photocoagulation instrument pioneered by Meyer Schwickerath, was made commercially by Ziess.

"L'esperance'., 1989".

In 1960, Maiman constructed the first working laser, using ruby crystal with a mono chromatic emission of red light "693.4 nm", and it was used to treat a number of retinal conditions but less successful in treating proliferative diabetic retinopathy "PDR".

"Mchugh et al., 1988".

Page 2

Mile Stone of Photo Coagulation		
400 BC	Plato recognized ocular damage by sun.	
1640 AD	Bontus warns of eclips blindness.	
1845	Atomic bomb blindness.	
1946	Atomic bomb blindness research.	
1948	Meyer-Schwickerath experiment	
1956	Xenon- arc photocoagulation	
1960	Advent of laser	

Table I-I
" quoted from L'esperance F.A. Ophthalmic laser, St. louis,
the C.V. Mosby Company, Vol. 1:14, 1989"

In 1968, Aiello and coworkers described the use of the ruby laser in treating PDR. Difficulty in producing a full thickness retinal coagulation, and the risk of subretinal haemorrhage with ruby laser, attributed to the short pulse duration "2 milliseconds", and the emitted red wave length, helped to stimulate the development of continuous wave "CW" gas ion laser to be used in ophthalmology.

"Mark and carmen., 1990"

The relative importance of wave length led to development of blue green CW argon laser photocoagulation by L'esperance in 1986, which became commerically available in 1971 and was in wide spread clinical use by 1975.

The early argon photocoagulator emitted more than 70% of their radiation in the blue "488 nm", which is close to the peak absorption of luteal pigments "460nm". Many early treatments of macular region using such system

PAGE 4