RELATION BETWEEN GROWTH HORMONE, RENAL SIZE BY ULTRASONOGRAPHY AND GLOMERULAR FILTRATION RATE IN DIFFERENT STAGES OF PREGNANCY

THESIS

SUBMITTED FOR PARTIAL FULFILMENT OF THE MASTER DEGREE (M.Sc.) IN INTERNAL MEDICINE

BY

WALID FOUAD ABDEL-WAHED HEGAZY 50989 M.B., B.Ch.

Supervised by

Prof. Dr. Badawy Labib Mahmoud
Professor of Internal Medicine & Nephrology

Prof. Dr. Hany Aly Refaat
Assistant Professor of Internal Medicine & Nephrology

Prof. Dr. Ahmed Rashed Mohamed Rashed
Assistant Professor of Obstetrics & Gynaecology

Prof. Dr. Ahmed Kamal El-Dorry Assistant Professor of Radiology

Dr. Sanaa Eissa Mohamed Lecturer of Biochemistry

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1992

Sometimes, the truest feelings are those we keep inside, and though not often mentioned, they are the most sincere

To my very dear brother Ramzy, with all my love and respect

And to my children, Mohamed & Maya, they are my life

ACKNOWLEDGEMENT

"First and foremost, thanks are due to GUD , the most Beneficent and Merciful".

I would like to express my deepest thanks and gratitude to Prof. Dr. Badawy Labib Mahmoud, Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for his humanity, close supervision, sincere help and valuable advice throughout this work.

My sincerest appreciation to Prof. Dr. Hany Ali Rifalt, Assistant Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for his continuous supervision, generous contributions and unlimited assistance. His indispensable guidance and invaluable suggestions have greatly enriched this work.

I am very grateful to Prof. Dr. Ahmed Rashed Mohamed Rashed, Assistant Professor of Obstetrics & Gynaecology, Faculty of Medicine, Ain Shams University, for his kind supervision, valuable support and expert advice especially in selecting the cases and revising the results.

I am also indebted to Prof. Dr. Ahmed Kamal El-Dovry, Assistant Professor of Radiology, Faculty of Medicine, Ain Shams University, for his kind supervision, generous cooperation and endless encouragement. His unlimited experience and patience in performing the radiological part of this study is beyond expression.

I wish to express my deep gratitude and sincere appreciation to Dr. Sanaa Eissa Mohamed, Lecturer of Biochemistry, Faculty of Medicine, Ain Shams University, for her continuous supervision, generous effort and unlimited assistance throughout the whole work. She performed the assay procedures and kindly revised the whole text. To her I am deeply indebted.

I would like to thank Dr. Mohamed Ali, and Dr. Ali Mousa Ali, Lecturers of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, for their help throughout this research.

Finally, I would like to thank all the workers in the Nephrology Laboratory, Ain Shams University Hospital, and in the Oncology Diagnostic Unit, Biochemistry Department, Faculty of Medicine, Ain Shams University for their help and assistance.

CONTENTS

	PAGE
INTRODUCTION	1
REVIEW OF LITERATURE	3
HORMONAL CHANGES IN PREGNANCY	3
Pregnancy	3
(B) Growth Hormone Variants	16
(C) Pattern Of Secretion Of Growth Hormone And Its Variants During Pregnancy	21
RENAL FUNCTIONAL CHANGES IN PREGNANCY	23
EFFECT OF PREGNANCY ON KIDNEY	32
EFFECT OF GROWTH HORMONE ON RENAL SIZE AND GLOMERU-LAR FILTRATION RATE	35
SUBJECTS AND METHODS	38
RESULTS	54
DISCUSSION	82
SUMMARY AND CONCLUSIONS	103
REFERENCES	110

LIST OF TABLES

			PAGE
Table	(1):	Clinical data of group I (Subjects in the first trimester)	50
Table	(2):	Clinical data of group II (Subjects in the second trimester)	51
Table	(3):	Clinical data of group III (Subjects in the third trimester)	52
Table	(4):	Clinical data of the control group (Non-pregnant subjects)	53
Table	(5):	Laboratory data of the control group (Non-pregnant subjects)	55
Table	(6):	Laboratory data of group I (Subjects in the first trimester)	57
Table	(7):	Laboratory data of group II (Subjects in the second trimester)	59
Table	(8):	Laboratory data of group III (Subjects in the third trimester)	61
Table	(9):	Mean values (± S.D.) of investigated parameters in different stages of pregnancy compared to control group	64
Table	(10):	Mean values (± S.D.) of investigated parameters in studied groups in relation to parity	66
Table	(11):	Correlation between growth hormone and human placental lactogen with the other laboratory data in the different stages of pregnancy	69
Table	(12):	Correlation between kidney function (blood urea, serum creatinine and creatinine clearance) with the other laboratory data in the different stages of pregnancy	7.0

LIST OF FIGURES

			PAGE
Fig.	(1):	The changes in the mean $(\pm S.D.)$ blood urea levels at different stages of pregnancy	71
Fig.	(2):	The changes in the mean (± S.D.) serum creatinine levels at different stages of pregnancy	72
Fig.	(3):	The changes in the mean (\pm S.D.) creatinine clearance at different stages of pregnancy	73
Fig.	(4):	The changes in the mean (± S.D.) serum human growth hormone levels at different stages of pregnancy	74
Fig.	(5):	The changes in the mean $(\pm S.D.)$ serum human placental lactogn levels at different stages of pregnancy	75
Fig.	(6):	The changes in the mean (± S.D.) right kidney longitudinal axis at different stages of pregnancy	76
Fig.	(7):	The changes in the mean (± S.D.) right kidney transverse axis at different stages of pregnancy	77
Fig.	(8):	The changes in the mean $(\pm S.D.)$ right kidney thickness at different stages of pregnancy	78
Fig.	(9):	The changes in the mean (± S.D.) left kidney longitudinal axis at different stages of pregnancy	79
Fig.	(10):	The changes in the mean (± S.D.) left kidney transverse axis at different stages of pregnancy	80
Fig.	(11):	The changes in the mean (± S.D.) left kidney thickness at different stages of pregnancy	81

LIST OF ABBREVIATIONS

anti-HGH : Antihuman growth hormone.

bGH : Bovine growth hormone.

CGP : Chorionic growth hormone-prolactin.

D.M. : Diabetes mellitus.

ELISA : Enzyme-linked immunosorbent assay.

ERPF : Effective renal plasma flow.
GFR : Glomerular filtration rate.

GH : Growth hormone.

GHRF : Growth hormone releasing factor.
hCS : Human chorionic somatomammotropin.
hCS-A : Human chorionic somatomammotropin A.
hCS-B : Human chorionic somatomammotropin B.

hCS-L : Human chorionic somatomammotropin pseudogene.

HGH : Human growth hormone.

HGH-N : Normal human growth hormone.

HGH-V : Human growth horomone variant.

hIGF-I : Human insulin-like growth factor I.

hPGH : Human placental growth hormone.

hPL : Human placental lactogen.
IGF-I : Insulin-like growth factor I.

KD : Kilo Dalton.

MAB : Monoclonal antihuman antibodies.
MABP : Mean arterial blood pressure.
mRNAS : Messenger ribnonucleic acids.

NSB : Nonspecific binding.
OD : Optical density.
PAH : Para-aminohippurate.

PGH : Placental growth hormone.

PRL : Prolactin.

RPF : Renal plasma flow.

RVR : Renal vascular resistance.

S.D. : Standard deviation.

SHR : Spontaneously hypertensive rat.

SM : Somatomedins.

SNGFR : Single nephron glomerular filtration rate.

Introduction & Aim Of The Work

INTRODUCTION & AIM OF THE WORK

Human pregnancy is characterized by a dynamic change in a variety of metabolic functions. The regulatory mechanisms responsible for these changes in maternal protein, carbohydrate and lipid metabolism have traditionally been ascribed to the dramatic increase in circulating steroid and peptide hormones. Pituitary growth hormone (HGH), a major regulatory protein, has anabolic effects and stimulates protein synthesis in many tissues including bone, muscle, connective tissue and visceral organs. HGH also has profound effects on carbohydrate and lipid metabolism (Merimee, 1979).

Increased concentrations of HGH and its variants were recorded from midpregnancy until full-term (Kaplan and Grumbach, 1964; Katz et al., 1969; Kletzky et al., 1985; Frankenne et al., 1988), and placental GH (PGH) behaves as a strong agonist to pituitary GH in binding to hepatic and other HGH receptors (Frankenne et al., 1988).

Furthermore, during normal pregnancy, glomerular filtration rate (GFR) and renal plasma flow (RPF) were recorded to increase by 30-50% above the pre-gravid values starting early in pregnancy and reaching maximum levels in the last trimester (Dignam et al., 1958; Lindheimer and Katz, 1970;

Dunlop, 1981; Ronco et al., 1988). Also, kidney length was reported to increase approximately one cm during normal pregnancy (Lindheimer and Katz, 1990; Kincaid-Smith, 1991).

On the other hand, more than forty years ago, it was noticed that increased HGH levels in patients with acromegaly were associated with an increase in renal size and function (Barnett et al., 1943) and the administration of HGH to normal human subjects led to a significant increase in GFR and RPF (Corvilain and Abramow, 1962).

Recently, much argue arose regarding the effect of increased GFR and RPF on the kidney function and morphology. Some investigators attributed glomerular injury to the increase in glomerular pressure (Brenner, 1983) and correlated the increased glomerular size with mesangial sclerosis (Doi et al., 1990). However, this effect was denied by other workers (Baylis and Rennke, 1985).

So, it became the aim of the present work to study the relationship between renal size, GFR and growth hormone (or its variants with similar activity in maternal serum) during different stages of pregnancy in comparison to non-pregnant women, and to compare the results of multiparae with those of primigravidae.

Review Of Literature

HORMONAL CHANGES IN PREGNANCY

HORMONAL CHANGES IN PREGNANCY

(A) Growth Hormone (And Its Variants) During Pregnancy

In 1956, Contopoulos and Simpson investigated the presence of growth-promoting activity in the plasma of normal and pregnant rats. They found that the plasma from pregnant rats at the sixteenth to twentieth days of gestation contained three times the amount of growth activity present in normal rat plasma. This growth promoting activity was not decreased by hypophysectomy of the mother at the twelfth day of pregnancy. So, the investigators suggested a foetal origin of the growth-promoting factor (Contopoulos and Simpson, 1956).

Later, Josimovich and MacLaren (1962), described that the placenta produced a substance which was immunochemically closely related to human pituitary growth hormone (HGH). This substance, which was isolated in relatively large amounts and purified form, from full term human placentas, was called "human placental lactogen" (hPL) due to its highly lactogenic properties in the pseudopregnant rabbit. However, this substance was devoid of the growth-promoting activity in the hypophysectomized rat tibial plate growth assay at the dose levels tested.