

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

BOKKY

Effect of Gamma Radiation on Materials Used for Removal of Some Environmental Pollutants

Thesis

Submitted to

Environmental Studies and Research Institute Ain Shams University

For

M.Sc. Degree of Environmental Science

Department of Biological and Physical Science

 $\mathbf{B}\mathbf{y}$

Nabil Amin Ahmed El-Kelesh

(B.Sc.-Chemistry)

Cairo University

National Center for Radiation Research and Technology

Atomic Energy Authority

Cairo, Egypt

بسم الله الرحمين الرحييم

Acknowledgement

The author is greatly indebted to Professor Dr. M. S. Abdel Mottaleb, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, to Professor Dr. A.M. Dessouki, Head of Radiation Chemistry of Polymers Department, National Center for Radiation Research and Technology (NCRRT) and to Dr. R.O.Aly (NCRRT) for suggesting the point of research, supervision, continuous guidance and valuable discussions throughout this work.

My best thanks to Professor Dr. M. A. Z. El-Behay, Chairman of NCRRT and to Professor Dr. E.A. Hegazy, Head of Radiation Chemistry of Polymers Department for encouragement and care. Many sincere thanks to Professor Dr. A. Yassin, Dean of Institute of Environmental studies and Research Ain Shams University and Professor Dr. Abdalla Ibrahim, Head of Department of Biological and Physical Science for their valuable help and interest. Also, my best thanks to all my colleagues in the department and the NCRRT.

Effect of Gamma Radiation on Materials Used for Removal of Some Environmental Pollutants

Thesis Advisors:

Prof. Dr. M.S. Abdel Mottaleb.

Prof. Dr. A.M. Dessouki.

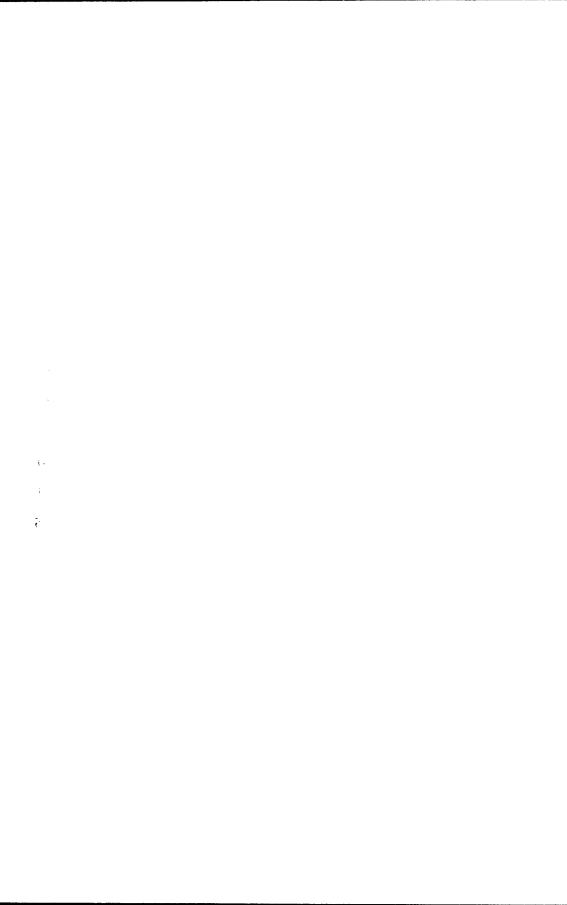
Dr. R.O. Aly.

Approved

a.T. Dessouti

Prof. Dr. Abdalla Ibrahim.

Head of Department of Biological and Physical Sciences.


CONTENTS

 $\underline{\Pi}$

137 T

Pro

1()

CONTENTS

P	age		
AIM OF THE WORK			
CHAPTER I			
INTRODUCTION	1		
Water importance and control of water pollution	1		
Pesticides	4		
Adsorption	6		
Adsorption on active carbon	. 8		
Interaction of gamma-rays with matter	10		
a- Effect of gamma-radiation on Water	12		
b- Effect of gamma-radiation on aqueous solutions	15		
CHAPTER II			
LITERATURE REVIEW	19		
Adsorption of pesticides from wastewater	19		
Effect of gamma-radiation on pesticide solutions	27		
Effect of gamma-radiation on activated carbon	28-		

Effect of gamma-radiation on strong cation exchange resins 30

...... 39

Effect of gamma-radiation on anion exchange resins

	1	Page
	CHAPTER III	
EXI	PERIMENTAL	49
	1-Materials	49
	a- Pesticides	49
	- Organophosphorus pesticides	49
ϕ_{γ}	- Carbamate pesticides	51
	- Chlorohydrocarbon pesticides	. 52
;·	b-Adsorbents	. 53
. •	-Granular active carbon	53
s . '	- Ion- exchange resins	53
s * 2*	2- Experimental techniques	55
	- Gamma irradiation source	55
<u>ک</u> .	- U.V. Spectrophotometer	
1:	- pH-Meter	
1.	3- Methods used for adsorption studies	59
	a- Equilibrium studies	
	b- Kinetic studies	
	c- Column studies	-59
	CHAPTER IV	
RES	SULTS AND DISCUSSION	60
	1- Selective conditions for adsorption isotherm studies on	
	column systems	62
	a- Column length	62
	b- Column diameter	62

	Page
c- Effect of initial concentration	64
d- Effect of flow rate.	66
2- Adsorption purification of water from pesticides	70
A- Column studies	70
- Radiation regeneration of adsorbents after	
complete exhaustion	79
- Radiation adsorption purification at the end of	of
steadiness	98
B- Equilibrium studies (Batch Experiments)	110
- Effect of pH on adsorption capacity	112
- Effect of temperature on adsorption capacity	127
SUMMARY	135
REFERENCES	
ARARIC SUMMARY	- • •

TABLES AND FIGURES LIST

Tables:		
Table (1):	Solubility of pesticides in water	Page
Table (2):		50
	(mg/g) for the different pesticides, the volume capacity	
	in liters and the removal precent of the pollutant.	76
Table (3):		70
C - 1 1	different pesticides, the volume capacity in liters and	
₹ <i>01</i>	the removal percent of the pollutant.	76
Table (4):	Adsorption capacity of Merck III (mg/g) for the	
	different pesticides, the volume capacity in liters	
801	and the removal percent of the pollutant.	77
Table (5):	Adsorption capacity of Amberlite-X48 (mg/g) for	
	the different pesticides, the volume capacity in liters	
	and the removal percent of the pollutant.	77
Table (6):	Adsorption capacity of Merck-I (mg/g) for the	
	different pesticides, the volume capacity in liters	
	and the removal percent of the pollutant.	78
Table (7):	Adsorption capacity of GAC (mg/g) for the	
	different pesticides, the volume capacity in liters	
	and the removal percent of the pollutant. Irradiations were carried out at the end of steadiness.	
	Adsorption capacity of Dowex-1 (mg/g) for the	106
, ,	different pesticides, the volume capacity in liters	
	and the removal percent of the pollutant.	
	Irradiations were carried out at the end of steadiness.	106