Testicular Germ Cell Tumours: Evaluation of Histology Using Immunohistochemical Techniques

Essay

Submitted in partial fulfillment for the requirement of Master Degree in Pathology

By

Hala Azer Zaky

M.B., B.Ch.

Supervisors

Prof. Dr.

Sanaa A. Sammour

Professor of Pathology Faculty of Medicine, Ain Shams University

Dr.

Mourad S. Rashad

Assist. Professor of Pathology Faculty of Medicine, Ain Shams University

Jaten Wagdi Raghib

Lecturer of Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

316 0 A 561 11. A

CONTENTS

Pag	<u> </u>
INTRODUCTION	1
AIM OF THE WORK	2
Anatomy of the testis and its coverings	3
Embryology of male sexual organs	9
Histology of testis	12
Classification of testicular tumors	18
Carcinoma in situ of the testis	50
Diagnostic immunohistochemistry	64
Basis of immunohistochemistry	75
Tumor markers & immunohistochemistry	82
CONCLUSION	98
SUMMARY	100
REFERENCES	103
ARABIC SUMMARY	

LIST OF TABLES

Pag	e
Table (1): Comparison of British and WHO classification	
of testicular germ cell tumours	24
Table (2): Summarizes the incidence of carcinoma in situ	
in patients with testicular germ cell tumors and other	
high risk patients	52
Table (3): Summary of the reactions of different immuno-	
histochemical markers with each type of testicular	
germ cell tumors	95

LIST OF FIGURES

	ge
Fig. (1): Transverse section through the left side of the	
scrotum and the left testicle.	4
Fig. (2): Vertical section of the testicle, to show the	
arrangement of the ducts.	8
Fig. (3): Primitive sex cords	10
Fig. (4): The descent of the testes	[]
Fig. (5): The three classes of spermatogonia	14
Fig. (6): Stages of spermatogenesis	17
Fig. (7): Summary of histogenesis of testicular germ cell	
tumor	22
Fig. (8): The new approach to testicular germ cell tumor	
classification	20
Fig. (9): Case of typical seminoma	40
Fig. (10): Case of anaplastic seminoma	41
Fig. (11): Same case of anaplastic seminoma showing	
pleomorphic malignant cells with prominent mitotic	
figures	42
Fig. (12): Case of spermatocytic seminoma	4.
Fig. (13): Case of embryonal carcinoma	44
Fig. (14): Case of embyonal carcinoma showing glandular	
pattern.	. 4:

LIST OF FIGURES (CONT.)

	<u>e</u>
Fig. (15): Case of yolk sac tumor (endodermal sinus tumor)	46
Fig. (16): Case of choriocarcinoma	47
Fig. (17): Case of mature teratoma	48
Fig. (18): Case of immature teratoma	49
Fig. (19): Intratubular germ cell neoplasia	56
Fig. (20): Immuno peroxidase procedures	79
Fig. (21): Biotin-avidin immunoenzymatic techiques	81
Fig. (22): Case of seminoma, placental alkaline phophatase	
immuno-staining	96
Fig. (23): Case of Endodermal sinus tumor, alpha fetoprote	in
immuno staining	97

Acknowledgment

In the beginning, thanks to God, who helped me complete this study.

I would like to express my sincere appreciation and gratitude to my Prof. Dr. Sanaa A. Sammour, Professor of Pathology, Ain Shams University, for her sincere help, motherly encouragement, and valuable guidance. Without her kind help and advice, this work would not have come to light. It is a pleasure to work under her supervision

I would like also to express my profound thanks to Dr. Mourad S. Rashad, Assist. Professor of Pathology, Ain Shams University, for his kind attitude and supervision to complete this work.

I want to express my everlasting gratitude to **Dr. Faten W. Raghib**, Lecturer of Pathology, Ain Shams University, for her great help and time she gave me during the supervision of this work.

Tinally, I would like to thank everyone who helped me throughout this work.

Abstract

Immunohistchemistry is very important in the assessment of germ cell tumors. The most sensitive marker in diagnosis of seminoma is placental alkaline phosphatase (PLAP). In non seminomatous germ cell tumors: 43-9F monoclonal antibody is the most sensitive marker in diagnosis of embryonal carcinoma, AFP in yolksac tumor and HCG & AFP in teratoma. Regarding carcinoma in situ (CIS): M2A monoclonal antibody assessment is significantly diagnostic for adult cases and 43-9F monoclonal antibody in both pre-pubertal and adult cases.

INTRODUCTION