ACUTE PHASE PROTEINS IN CHILDREN WITH BRONCHIAL ASTHMA

Thesis

Submitted in partial fulfilment of the Master

Degree of Pediatrics

Ву

Amina Shahhat Hassanein Abdel Fattah

M.B., B.Ch.

1

Under the supervision of

Dr. Magid Ashraf Abdel Fattah Ibrahim

Assist, Prof. of Pediatrics

Dr. Mohamed Nasr El-Din El-Barbary

Lecuturer of Pediatrics

Dr. Mona Mohamed Rafik

Prof. of Clinical Pathology

Ain Shams University Faculty of Medicine 1994

TO MY FAMILY

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to **Dr-Magid Ashraf Abdel Fattah**, Assistant Professor of Pediatrics,

Faculty of Medicine, Ain Shams University, for his valuable suggestions and for his great encouragement and advice throughout the whole work.

I am really very grateful to **Dr. Mohamed El-Barbary**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his great help, continuous guidance and constant supervision.

My deepest thanks and sincere respects to **Dr. Mona Mohamed Rafik**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her valuable assistance and moral support.

I greatly appreciate the help of **Dr. Mohamed El-Awady** Lecturer of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, for preparing the statistical analysis of this work.

Lastly, I thank all my patients and their families for without their help, this work would have never been accomplished.

Amina Shahhat 1994

LIST OF ABBREVIATIONS

 α_1 -AT = Alpha-1- antitrypsin

A.P.Ps = Acute phase proteins.

B.A. = Bronchial asthma.

C.R.P = C-reactive protein.

Cp = Ceruloplasmin.

E.I.A = Exercise induced asthma.

 $F.E.V_1$ = Forced expiratory volume in 1 second

F.V.C = Forced vital capacity.

FEF_{25%-75%} = Forced expiratory flow between 25%

and 75% of vital capacity...

HG = Haptoglobin.

IL = Interleukin.

LT = Leukotriene(s).

NANC = Non adrenergic non cholinergic.

O.D. = Optical density.

P.A.F = Platelet activating factor.

PG = Prostaglandin(s).

SAA = Serum amyloid A.

SAP = Serum amyloid P.

SLE = Systemic lupus erythematosus.

SR = Sedimentation rate.

LIST OF TABLES

Tal	ole No. :	Page
	1- Trigger factors which may precipitate symptoms	
	of asthma	4
	2- Epithelial damage in asthma	15
	3- Compounds associated with idiosyncratic reactions	26
	4- Classification of asthma severity	29
	5- Clinical features of chronic asthma	31
	6- Indications for pulmonary function testing associated	
	with pediatric asthma	36
	7- Useful actions of corticosteroids in asthma	43
	8- Acute phase proteins and their functions	48
	9- Types of acute phase protein response	49
	10- CRP levels in human sera	54
	11- Clinical data of the group of patients	86
	12- Laboratory data of the group of patients	87
	13- Laboratory data of the group of control children	88
	14- Descriptive data of the patients	89
	15- Descriptive data of the male patients	89
	16- Descriptive data of the female patients	89
	17- Descriptive data of the control children	90
	18- Descriptive data of the male control children	90
	19. Descriptive data of the female control children	9.0

20-	Comparison between group I (patients) and group II	
	(controls) as regards the age	91
21-	Comparison between male and female patients as	
	regards the age	91
22-	Comparison between male and female control	
	children as regards the age	92
23-	Comparison between group I (patients) and group II	
	(controls) as regards serum CRP levels	92
24-	Comparison between male and female patients	
	as regards serum CRP levels	93
25-	Comparison between male and female control	
	children as regards serum CRP levels	93
26-	Comparison between group I (patients) and group II	
	(controls) as regards plasma fibrinogen levels	94
27-	Comparison between male and female patients	
	as regards plasma fibrinogen levels	94
28-	Comparison between mate and female control children	
	as regards plasma fibrinogen levels	95
29-	Comparison between group I (patients) and group	
	II (controls) as regards serum ∞1-AT levels	95
30-	Comparison between male and female patients as	
	regards serum ∝ ₁ -AT levels	96
31-	Comparison between male and female control	
	children as regards serum ∞ ₁ -AT levels	96

LIST OF FIGURES

Fig. No. :	Page
1- Modle of the ways in which allergen exposure	
contributes to asthma	6
2- Cells involved in asthma	11
3- Important mediators of asthma	17
4- Membrane-derived lipid mediators	19
5- Flow volume curves	35
6- Comparison between patients and control children	
as regards mean levels of serum CRP (in mg/L)	97
7- Comparison between Patients and control children	
as regards mean levels of serum ∞1-AT (in g/L)	98
8- Comparison between patients and control children as	
regards mean levels of plasma fibrinogen (in mg/dl)	99

CONTENTS

	Page
I- Introduction and aim of the work	1
II- Review of literature	3
1- Bronchial asthma	3
Definition	3
Etiology	4
Incidence and prevalence	10
Pathophysiology	11
Classification	24
Diagnosis	29
Therapy	37
2- Acute phase proteins	47
C-reactive protein	50
Alpha-1- antitrypsin	59
Fibrinogen	65
Haptoglobin	70
Ceruloplasmin	72
Serum amyloid A	74
III- Subjects and methods	7 5
IV - Results	8 4
V - Discussion	100
VI - Summary and conclusion	110
VII- References	112
VIII- Arabic summary	-

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

Wheezing respiratory illness and asthma are responsible for a significant proportion of both acute and chronic illness in childhood (Bierman and Pearlman, 1990).

Bronchial asthma might be described as a paroxysmal or periodic functional impairment of respiration manifested against a background of usually progressive hyperreactivity of the airways. It is a complex syndrome, which may be acute or chronic, monocausal or multicausal, and which may occur either in isolation or in association with other syndromes, seasonally or all year around, and may be either reversible or irriversible (Broberger et al., 1986).

Affecting approximately 5 % to 10 % of children (Bierman and Pearlman, 1990), asthma is of growing concern because of an apparent increase in mortality and morbidity (Burney, 1992).

Acute phase proteins are proteins manufactured by the hepatocytes of the liver. During infections, after trauma or in the presence of malignancy, the hepatocytes of the liver are stimulated to synthesize acute phase proteins such as fibrinogen, alpha1-antitrypsin or C-reactive protein. These proteins have a number of protective roles when there is

inflammation or tissue damage and protease enzymes are being released (Wardle, 1992).

Aim of the work:

Evaluation of acute phase proteins may be useful as a possible diagnostic tool in the diagnostic work-up in cases of bronchial asthma. Their estimation may prove to be of value in indicating cases with an underlying infectious etiology or tissue breakdown.

REVIEW OF LITERATURE

BRONCHIAL ASTHMA (B.A.)

Definition of B.A. :

Asthma is the most common form of long term respiratory disease of childhood (Morgan and Martinez, 1992).

Acute reversible episodes of breathlessness and wheezing are readily recognized as asthma. In contrast, isolated cough, isolated breathlessness, chest discomfort after exertion, may not be recognized as manifestations of variable airflow obstruction (Dolovich and Hargreave, 1981).

Wheezing respiratory illness and asthma are responsible for a significant proportion of both acute and chronic illness in childhood (Bierman and Pearlman, 1990). Affecting approximately 5% to 10% of children (Bierman and Pearlman, 1990), asthma is of growing concern because of an apparent increase in mortality and morbidity (Burney, 1992).

Asthma might be also described as a paroxysmal or periodic functional impairment of respiration, manifested against a background of usually progressive hyperreactivity of the airways. It is a complex syndrome, which may be acute or chronic, monocausal or multicausal and which may occur either in isolation or in association with other syndromes,