

CORROSION OF SOME COPPER ALLOYS IN SALINE WATER CONTAINING

POLLUTANTS

A thesis

Submitted in Partial Fullfillment for the

Master Degree of Science

(Chemistry)

N. 3.

By Line,

63727

Nahla Ismail Abdel Salam

The National Research Center (NRC)

Faculty of Science
Ain Shams University

1997

A PPROVAL SHEET

Name

: Nahla Ismail Abdel Salam

Title

: Corrosion of Some Copper Alloys in Saline Water

Containing Pollutants.

Supervisors

2- Dr. Khaled M. Elewa Hashem

9- Prof. Dr. S.M. Said

Approved

Credit

Prof. Dr. A.F. Fahmy

Head of Chemistry Department

ACKNOWLEGEMENT

The author would like to express her gratitude to Dr. A.M. Abd El-Halim Prof. of Physical Chemistry, Faculty of Science, Ain Shams University for his interest, encouragement, help and support of this work.

The author wants to thank Dr. Khaled Elewa Hashem Dr. of Physical Chemistry, Faculty of Science, Ain Shams University for his valuable and useful discussions and also for his help.

The author is particularly indebted to **Dr. S.M. Said** Prof of Physical Chemistry (NRC) for suggesting the problem, supervision, the very considerable help and guidance during the different stages of the work

The author is grateful to her colleagues at the Physical Chemistry Department (NRC) and to all those who helped her during the work in this thesis.

CONTENT

Page
ABSTRACTi
CHAPTER 1. Introduction
1. Introduction
1.1 Corrosion of Cu-base alloys in seawater4
1.2 Corrosion of Cu-alloys in polluted seawater12
1.2.1. Corrosion of Cu-base alloys in seawater
contaminated with ammonia14
1.2.2. Corrosion in seawater contaminated with
sulphide15
CHAPTER 2. Experimental
2. Experimental
2.1. Specimens
2.2. Electrolytic solutions
2.3. Electrochemical polarization measurements
2.4. Performance of an experiment29
2.5. Open circuit measurements
2.6. Performance of the experiment29
2.7. Weight-loss measurements
2.8 Metallographic investigations
2.9 X-ray diffraction analysis
CHAPTER 3. Results and Discussion
3. Results and Discussion
3.1. Corrosion behaviour of Cu-alloys in NaCl solutions
containing additives of ammonia32

	Page
3.1.1 Results	32
3.1.1.1 Potential-time measurements	32
3.1.1.2 Polarization measurements	34
3.1.1.3. Weight-loss measurements	35
3.1.1.4. Microscopic investigations	36
3.1.1.5 X-ray diffraction analysis	39
3.1.2. Discussion	41
3.2. Corrosion behaviour of Cu alloys in NaCl solutions	
containing additives of sulphide ion	64
3.2.1 Results	64
3.2.1.1 Potential-time measurements	64
3.2.1.2 Polarization measurements	68
3.2.1.3 Microscopic investigations	69
3.2.1.4. X-ray diffraction analysis	71
3.2.2. Discussion	72
CHAPTER 4	
Summary	89
References	93
Arabic Summary	

LIST OF FIGURES

		Page
Fig. (1)	The Potential-time and Polarization cells	28
Fig. (2)	Potential-time curve of brass alloy in 3.4% NaCl	
	solution contaminated with increasing additions of	
	ammonia	47
Fig. (3)	Potential-time curve of Al-bronze alloy in 3.4%	
,	NaCl solution contaminated with increasing	
	additions of ammonia	48
Fig. (4)	Potential-time curve of Cu-Ni 90:10 alloy in 3.4%	
	NaCl solutin contaminated with increasing	
	additions of ammonia	49
Fig. (5)	The steady state potential vs concentration of	
	NH₄OH for copper -base alloys.	50
Fig. (6)	Polarization curve of brass alloy in 3.4% NaCl	
	solution contaminated with increasing additions of	
	ammonia	51
Fig. (7)	Polarization curve of Al-bronze alloy in 3.4% NaCl	
	solution contaminated with increasing additions of	
	ammonia	52
Fig. (8)	Polarization curve of Cu-Ni 90:10 alloy in 3.4%	
	NaCl solution contaminated with increasing	
	additions of ammonia	53

		rage
Fig. (9)	The variation of weight loss of the copper-base	
	alloys during immersion in 3.4% NaCl	
·	containing 100 ppm NH ₄ OH	54
Fig. (10)	Optical micrograph showing the appearance of	
	the brass alloy surface after immersion in 3.4%	
	NaCl containing 100 ppm NH ₄ OH	55
Fig. (11)	Scanning Electron micrograph showing the	
	appearance of the brass alloy after immersion in	
	3.4% NaCl containing 100 ppm NH4OH	56
Fig. (12)	Optical micrograph showing the appearance of	
	the Al-bronze alloy surface after immersion in	
	3.4% NaCl containing 100 ppm NH4OH	57
Fig. (13)	Scanning electron micrograph showing the	
	appearance of the Al-bronze alloy surface after	
	immersion in 3.4% NaCl containing 100 ppm	
	NH4OH	58
Fig. (14)	Scanning electron micrograph showing the	
	appearance of the Cu-Ni 90: 10 alloy surface	
	after immersion in 3.4% NaCl containing	
	100 ppm NH₄OH	59
Fig. (15)	Optical micrograph showing the appearance of	
	the Cu-Ni (90/10) alloy surface after immersion	
	in 3.4% NaCl solution containing 100 ppm	
	NHAOH	60

		Page
Fig. (16)	The X-ray diffraction chart of the brass alloy	
	surface after immersion in 3.4% NaCl solution in	
	3.4% NaCl solution containing 100 ppm	
	NH4OH	61
Fig. (17)	The X-ray diffraction chart of Al-bronze alloy	
	surface after immersion in 3.4% NaCl solution	
	containing 100 ppm NH4OH	61
Fig. (18)	The X-ray diffraction chart of Cu-Ni 90:10	
	alloy surface after immersion in 3.4% NaCl	
	solution containing 100 ppm NH4OH	61
Fig. (19)	Potential-time curve of brass alloy in 3.4% NaCl	
	solution contaminated with increasing additions	
	of sulphide	76
Fig. (20)	Potential-time curve of Al-bronze alloy in 3.4%	
	NaCl solution contaminated with increasing	
	additions of sulphide	77
Fig. (21)	Potential-time curve of Cu-Ni 90: 10 alloy in	
	3.4% NaCl solution contaminated with	
	increasing additions of sulphide	78
Fig. (22)	The steady state potential vs concentration of	
	Na ₂ S for copper-base alloys	79
Fig. (23)	Polarization curve of brass alloy in 3.4% NaCl	
	solution contaminated with increasing additions	
	of sulphide	80

		Page
Fig. (24)	Polarization curve of Al-bronze alloy in 3.4%	
	NaCl solution contaminated with increasing	
;	additions of sulphide	81
Fig. (25)	Polarization curve Cu-Ni 90:10 alloy in 3.4%	
	NaCl solution contaminated with increasing	
	additions of sulphide	82
Fig. (26)	Scanning Electron micrograph showing the	
	appearance of the brass alloy surface after	
	immersion in 3.4% NaCl solution containing 100	
	ppm S ²⁻	83
Fig. (27)	Scanning electron micrograph showing the	
	appearance of the Al-bronze alloy surface after	
	immersion in 3.4% NaCl containing 100 ppm S ²⁻	84
Fig. (28)	Scanning Electron micrograph showing the	
	appearance of the Cu-Ni 90:10 alloy surface	
	after immersion in 3.4% NaCl containing 100	
	ppm S ²⁻	85
Fig. (29)	X-ray diffraction chart of the brass alloy surface	
	after immersion in 3.4% NaCl solution	
	containing 100 ppm Na ₂ S	86
Fig. (30)	X-ray diffraction chart of the Al-bronze alloy	
	surface after immersion in 3.4% NaCl containing	
	100 ppm Na ₂ S	86
Fig. (31)	X-ray diffraction chart of the Cu-Ni 90:10 alloy	
	surface after immersion in 3.4% NaCl containing	
	100 ppm Na ₂ S	86

LIST OF TABLES

		Page
Table 1:	X-ray diffraction analysis of corrosion product	
	adhering at α -brass alloy surface after immersion	
	in 0.6M NaCl containing 100 ppm	
•	NH4OH	62
Table 2:	X-ray diffraction analysis of corrosion products	
	adhering at Al-bronze alloy surface after	
	immersion in 0.6M NaCl containing 100 ppm	
	NH4OH	63
Table 3:	X-ray diffraction analysis of corrosion products	
	adherening at Cu-Ni 90:10 alloy surface after	
	immersion in 0.6M NaCl containing 100 ppm	
	NH4OH	63
Table 4:	The corrosion current values by µA measured	
	from Tafel slope of polarization curves	44
Table 5:	The steady state potential values by mv of alloys	
	under test in 3.4% NaCl containing increasing	
	additives of Na ₂ S by mg/l	67
Table 6:	X-ray diffraction analysis of corrosion products	
	adhering at brass alloy surface after immersion in	
	0.6 M NaCl containing 100 ppm Na ₂ S	87

		Page
Table 7:	X-ray diffraction analysis of corrosion products	
	adhering at Al-bronze alloy surface after	
	immersion in 0.6 M NaCl containing 100 ppm	
	Na ₂ S	87
Table 8:	X-ray diffraction analysis of corrosion products	
	adhering at Cu-Ni 90:10 alloy surface after	
•	immersion in 0.6 M NaCl containing 100 ppm	
	Na ₂ S	88